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Peer out your window. Unless you
are particularly lucky, you might

think that your daily view has little
affinity with some of the more spectac-
ular scenes you have taken in over the
years: the granite peaks of the high
Sierra, the white sands and blue waters
of an unspoiled tropical island or just a
beautiful sunset. Strangely, you would
be wrong. Most scenes, whether gor-
geous or ordinary, display an enor-
mous amount of similarity, at least in
their statistical properties. By charac-
terizing this regularity, investigators
have gained important new insights
about our visual environment—and
about the human brain.

This advance comes from the efforts
of a diverse set of scientists—mathe-
maticians, neuroscientists, psycholo-
gists, engineers and statisticians—who
have been rigorously attacking the
problem of how images can best be en-
coded and transmitted. Some of these
investigators are interested in devising
algorithms to compress digital images
for transmission over the airwaves or
through the Internet. Others (like our-
selves) are motivated to learn how the
eye and brain process visual informa-
tion. This research has led workers to
the remarkable conclusion that nature

has found solutions that are near to op-
timal in efficiently representing images
of the visual environment. Just as evo-
lution has perfected designs for the eye
by making the most of the laws of op-
tics, so too has it devised neural circuits
for vision by obeying the principles of
efficient coding.

To appreciate these feats of natural
engineering, one first needs a basic un-
derstanding of what neuroscientists
have learned over the years about the
visual system. Most of what is known
comes from studies of other animals,
primarily cats and monkeys. Although
there are differences among various
mammals, there are enough similari-
ties that neuroscientists can make some
reasonable generalizations about how
the human visual system operates.

For example, they have known for
many decades that the first stage of vis-
ual processing takes place within the
retina, in a network of nerve cells (neu-
rons) that process information coming
from photoreceptors. The results of
these mostly analog computations feed
into retinal ganglion cells, which repre-
sent the information in “digital” form
(as a train of voltage spikes) and pass it
though long projections that carry sig-
nals outward (axons). Bundled togeth-
er, these axons form the optic nerve,
which exits the eye and makes connec-
tions with neurons in a region near the
center of the brain called the lateral
geniculate nucleus. These neurons in
turn send their outputs to the primary
visual cortex, an area at the rear of the
brain that is also referred to as V1.

Neurons situated along this pathway
are usually characterized in terms of
their receptive fields, which delineate
where in the visual field light either
raises or lowers the level of neural ac-
tivity. Neurons in the retina and lateral
geniculate nucleus usually have recep-
tive fields with excitatory and inhibitory

zones arranged roughly in concentric
circles, whereas neurons in V1 typically
have receptive fields with parallel
bands of excitation and inhibition. At
higher stages of visual processing, in-
volving, for example, the areas known
as V2 and V4, receptive fields become
progressively more complex; yet char-
acterizing what exactly these neural cir-
cuits are computing remains elusive.

Although a vast amount of informa-
tion about the inner workings of the
visual system has been gathered over
the years, neuroscientists are still left
with the question of why nature has
fashioned this neural circuitry specifi-
cally in the way that it has. We believe
the answer is that the visual system or-
ganizes itself to represent efficiently the
sorts of images it normally takes in,
which we call natural scenes.

The Uniformity of Nature
Natural scenes, as we define them, are
images of the visual environment in
which the artifacts of civilization do
not appear. Thus natural scenes might
show mountains, trees or rocks, but
they would not include office build-
ings, telephone poles or coffee cups.
(Although we make this distinction,
most of our conclusions apply to artifi-
cial environments as well.) The images
for our studies come from photographs
we have taken with conventional cam-
eras and digitized with a film scanner.
We then calibrate these digitized im-
ages to account for the nonlinear as-
pects of the photographic process. Af-
ter doing so, the pixel values scale
directly with the intensity of light in
the original scene (Figure 1).

Why should a diverse set of images
obtained in this way show any statisti-
cal similarity with one another when
the natural world is so varied? One
way to get an intuitive feel for the an-
swer is to consider how images look
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Figure 1. Images of the natural environment, such as this view of a log resting on a stony embankment (top), exhibit a surprising degree of sta-
tistical similarity. To investigate these qualities, the authors had first to remove the effects of the photographic process from their images, yield-
ing estimates for the actual brightness (luminance) in each pixel. Because luminance spans an enormous range—it varies from about 100 to
40,000 candles per square meter in this image—linearly scaling these values to the shades that can be printed makes the scene look strangely
dim and stark (lower right). Histograms of pixel intensity (yellow panels) show that the distribution of luminance values is short and wide in a
light region, whereas it is narrow and peaked in a dark area. Summing the results from the three sample regions (white boxes) produces a dis-
tribution skewed toward low values, one that matches the shape of the histogram obtained for the image as a whole.
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when they are totally disordered (see
Figure 2). We created this rather drab
image by assigning the intensity of
each pixel a random value. This
process could have, in theory, pro-
duced a stunning image, one that ri-
vals any photograph Ansel Adams
ever took (just as sitting a monkey
down at a typewriter could, in theory,
produce Hamlet). But the odds of gen-
erating a picture that is even crudely
recognizable are exceedingly slim, be-
cause natural scenes represent just a
miniscule fraction of the set of all pos-
sible patterns. The question thus be-
comes: What statistical properties char-
acterize this limited set?

One simple statistical description of
an image comes from the histogram of
intensities, which shows how many
pixels are assigned to each of the possi-
ble brightness values. The first thing
one discovers in carrying out such an
analysis is that the range of intensity is
enormous, varying over eight orders of
magnitude from images captured on a
moonless night to those taken on a
sunny day. Even within a given scene,
the span is usually quite large, typical-
ly about 600 to one. And in images tak-
en on a clear day the range of intensity
between the deepest shadows and the
brightest reflections can easily be
greater. But a large dynamic range is
not the only obvious property that nat-
ural scenes share. One also finds that
the form of the histogram is grossly
similar, usually peaked at the low end
with an exponential fall-off toward
higher intensities.

Why does this lopsided distribution
arise? The best explanation is that it re-
sults from variations in lighting. Con-

sider the image shown in Figure 1. It
has a broad distribution of reflectances
across the scene but also displays obvi-
ous changes in illumination from one
place to the next. The objects in each
part of the image might have funda-
mentally similar ranges of reflectance,
but because some spots are illuminated
more strongly than others, the pixel
values in each zone essentially get mul-
tiplied by a variable factor. So the in-
tensities in a well-illuminated region
tend to show both a higher mean and a
higher variance than those in a poorly
lighted area. As a result, the distribu-
tion of pixel intensities within a bright
portion of the image is short and fat,
whereas in a dark one it is tall and
skinny. If pixel intensities are averaged
over many such regions (or, indeed,
over the entire image), one obtains a
smooth histogram with the characteris-
tic peak and fall-off.

Such a histogram can be thought of
as a representation of how frequently a
typical photoreceptor in the eye experi-
ences each of the possible light levels.

In reality, the situation is more compli-
cated, because the eye deals with this
vast dynamic range in a couple of dif-
ferent ways. One is that it adjusts the
iris, which controls the size of the pupil
(and thus the amount of light admitted
to the eye) depending on the ambient
light level. In addition, the neurons in
the retina do not directly register light
intensity. Rather, they encode contrast,
which is a measure of the fluctuations in
intensity relative to the mean level. 

Given that these neurons respond to
contrast, how would it make the most
sense for them to encode this quantity?
Theory dictates that a communication
channel attains its highest information-
carrying capacity when all possible sig-
nal levels are used equally often. It is
easy to see why this is so in an extreme
case, say where the signal uses only half
of the possible levels. Like a pipe half
full of water, the information channel
would be carrying only 50 percent of its
capacity. But even if all signal levels are
employed, the full capacity is still not
realized if some of these levels are used

240 American Scientist, Volume 88
© 2000 Sigma Xi, The Scientific Research Society. Reproduction

with permission only. Contact perms@amsci.org.

Figure 2. White-noise image, created by inde-
pendently assigning the intensity of each pix-
el a random value, contains no statistical or-
der and looks nothing like the natural scenes
one is used to seeing.
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Figure 3. Contrast-response function (red points) for retinal neurons (the so-called large monopo-
lar cells) in the eye of a fly displays an S shape. These responses very nearly match the curve
(black line) that transforms the distribution of contrasts a fly typically encounters (horizontal yel-
low panel) into a flat distribution (vertical yellow panel), accomplishing what specialists in signal
processing call histogram equalization. (Adapted from Laughlin, 1981.)



only rarely. So if maximizing informa-
tion throughput is the objective, the
neurons encoding contrast should do so
in a way that ensures their output levels
are each used equally often. And there
is indeed evidence that this transforma-
tion—called histogram equalization—
goes on in the eye.

In the early 1980s, Simon Laughlin,
working at the Australian National
University in Canberra, examined the
responses of large monopolar cells in the
eyes of flies. These are neurons that re-
ceive input directly from photorecep-
tors and encode contrast in an analog
fashion. He showed that these neurons
have a response function that is well
suited to produce a uniform distribu-
tion of output levels for the range of
contrasts observed in the natural envi-
ronment—or at least in the natural en-
vironment of a fly (Figure 3).

Investigators have found similar re-

sponse functions for vertebrates as
well. So it would seem that retinal neu-
rons somehow know about the statis-
tics of their visual environment and
have arranged their input-output func-
tions accordingly. Whether this achieve-
ment is an evolutionary adaptation or
the result of an adjustment that contin-
ues throughout the lifetime of an or-
ganism remains a mystery. But it is
clear that these cells are doing some-
thing that is statistically sensible.

Spatial Structure
Having considered a day in the life of
an individual photoreceptor, the next
logical thing to do is to examine a day in
the life of a neighborhood of photore-
ceptors. That is, how does the light
striking adjacent photoreceptors co-
vary? If you look out your window and
point to any given spot in the scene, it is
a good bet that regions nearby have
similar intensities and colors. Indeed,
neighboring pixels in natural images
generally show very strong correlations
(Figure 4). They tend to be similar be-
cause objects tend to be spatially con-
tinuous in their reflectance.

There are various ways to represent
these correlations. One of the most pop-
ular is to invoke Fourier theory and use
the shape of the spatial-frequency pow-
er spectrum. As Fourier showed long
ago, any signal can be described as a
sum of sine and cosine waveforms of
different amplitudes and frequencies. If
the signal under consideration is an im-
age, the sines and cosines become func-
tions of space (say, of x or y), undulating
between light and dark as one moves
across the image from left to right and
from top to bottom.

When a typical scene is decomposed
in this way, one finds that the ampli-

tudes of the Fourier coefficients fall with
frequency, f, by a factor of approximate-
ly 1/f (Figure 5). This universal property
of natural images reflects their scale in-
variance: As one zooms in or out, there
is always an equivalent amount of
“structure” (intensity variation) present.
This fractal-like trait is also found in
many other natural signals—height
fluctuations of the Nile River, the wob-
bling of the earth’s axis, the shape of
coastlines and animal vocalizations, to
name just a few examples.

Given that natural images reliably
exhibit this statistical property, it is
quite reasonable to expect that the vis-
ual system might take advantage of it.
After all, each axon within the optic
nerve consumes both volume and en-
ergy, so neglecting spatial structure
and allowing high correlations among
the signals carried by these wires
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Figure 5. Amplitudes of the Fourier compo-
nents in natural images (red line) fall with
spatial frequency (f) by approximately 1/f
(black line). This property is also found for
many other natural signals that exhibit a self-
similar (that is, fractal) character.

Figure 4. Correlation between two adjacent pixels in natural images is typically quite high, as plotting the brightness value of one against the
other reveals (left panel). If the points considered are situated two pixels apart, the correlation is somewhat less obvious (middle panel). If they
are situated four pixels apart, the correlation is weaker still, but it remains easy to discern in a scatter plot (right panel).
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Figure 6. Synthetic image that preserves the
two-point correlations found in natural
scenes appears curiously “natural.” But this
image lacks the sharp discontinuities in in-
tensity that are so commonly seen at the
edges of objects.



would constitute a poor use of re-
sources. Might the neurons within the
retina improve efficiency by pre-pro-
cessing visual information before it
leaves the eye and passes down the op-
tic nerve? And if so, what kind of ma-
nipulations would make sense?

Redundancy Reduction
The answer comes from a theory that
Horace Barlow of the University of
Cambridge formulated nearly 40 years
ago. He proposed a simple self-organ-
izing principle for sensory neurons—
namely that they should arrange the
strengths of their connections so as to
encode incoming sensory information
in a manner that maximizes the statis-
tical independence of their outputs
(hence minimizing redundancy). Bar-
low reasoned that the underlying caus-
es of visual signals are usually inde-
pendent entities—separate objects
moving about in the world—and if cer-
tain neurons somewhere in the brain
are to represent these objects properly,
their responses should also be inde-
pendent. Thus, by minimizing the re-
dundancy inherent in the sensory in-
put stream, the nervous system might
be able to form a representation of the
underlying causes of images, some-
thing that would no doubt be useful to
the organism.

Many years passed before Barlow’s
theory was put to work in a quantita-
tive fashion to account for the proper-
ties of retinal ganglion cells, first by
Laughlin and his colleagues in Canber-
ra (in the early 1980s) and then a
decade later by Joseph Atick, who was
working at the Institute for Advanced
Study in Princeton. Atick considered
the form of correlations that arise in
natural images—namely, the 1/f am-
plitude spectrum. He showed that the
optimal operation for removing these
correlations is to attenuate the low spa-
tial frequencies and to boost the high
ones in inverse proportion to their
original amplitudes. The reason is
quite simple: A decorrelated image has
a spatial-frequency power spectrum
that is flat—the spatial-frequency
equivalent of white noise—which is
just what Atick’s transformation yields.

Atick’s theory thus explains why
retinal neurons have the particular re-
ceptive fields they do: The concentric

zones of excitation and inhibition es-
sentially act as a “whitening filter,”
which serves to decorrelate the outputs
sent down the optic nerve. The specific
form of the receptive fields that Atick’s
theory predicts nicely matches the
properties of retinal ganglion cells in
terms of spatial frequency. And recent-
ly Yang Dan, now at the University of
California, Berkeley, showed that At-
ick’s theory also accounts for the tem-
poral-frequency response of neurons in
the lateral geniculate nucleus.

Sparse Coding
The agreement between the theory of
redundancy reduction and the work-
ings of nerve cells in the lower levels of
the visual system is encouraging. But
such mechanisms for decorrelation are
just the tip of the iceberg. After all,
there is more to natural images than
the obvious similarity among pairs of
nearby pixels.

One way to get a feel for the statisti-
cal structure present is to consider what
images would look like if they could be
completely characterized by two-point
correlations among pixels (Figure 6).
One of the most obvious ways that nat-
ural scenes differ from such images is
that they contain sharp, oriented dis-
continuities. Indeed, it is not hard to see
that most images contain regions of rel-

atively uniform structure interspersed
with distinct edges, which give rise to
unique three-point and higher correla-
tions. So one must also consider how
neurons might reduce the redundancy
that comes about from these higher-or-
der forms of structure.

A natural place to look is the primary
visual cortex, which has been the focus
of many studies since the early 1960s,
when David Hubel and Torsten Wiesel
at Harvard University first charted the
receptive fields of these neurons and
discovered their spatially localized, ori-
ented and “bandpass” properties. That
is, each neuron in this area responds se-
lectively to a discontinuity in luminance
at a particular location, with a specific
orientation and containing a limited
range of spatial frequencies. By the mid-
dle of the 1970s, some investigators be-
gan modeling these neurons quantita-
tively and were attempting to represent
images with these models. 

Stjepan Marcelja, a mathematician at

the Australian National University, no-
ticed some of these efforts by neurosci-
entists and directed their attention to
theories of information processing that
Dennis Gabor developed during the
1940s. Gabor, a Hungarian-English sci-
entist who is most famous for invent-
ing holography, showed that the func-
tion that is optimal for matching
features in time-varying signals simul-
taneously in both time and frequency
is a sinusoid with a Gaussian (bell-
shaped) envelope. Marcelja pointed
out that such functions, now common-
ly known as Gabor functions, describe
extremely well the receptive fields of 
neurons in the visual cortex (Figure 7).
From this work, many neuroscientists
concluded that the cortex must be at-
tempting to represent the structure of
images in both space and spatial fre-
quency. But the Gabor theory still begs
the question of why such a joint space-
frequency representation is important.
Is it somehow particularly well suited
to the higher-order statistical structure
of natural images?

About 15 years ago, one of us (Field)
began probing this question by investi-
gating the connection between the high-
er-order statistics of natural scenes and
the receptive fields of neurons in the vis-
ual cortex. This was a time when the “lin-
ear-systems” approach to the visual sys-
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Figure 7. Receptive fields of neurons in the visual cortex of cats (top) resemble certain two-dimensional Gabor functions (bottom). The neural cir-
cuitry of the visual system may adopt such forms of response because they are well suited to encode images efficiently. (After Daugman, 1989.)
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tem had garnered considerable populari-
ty. Years of research had provided many
insights into how the visual system re-
sponds to simple stimuli (like spots and
gratings) but revealed little about how
the brain processes real images.

At the time, most scientists studying
the visual system were under the im-
pression that natural scenes had little
statistical structure. And few believed
that it would be useful even to exam-
ine the possibility. Field’s first efforts to
do so using a set of highly varied im-
ages (of rocks, trees, rivers and so
forth) consistently showed the charac-
teristic 1/f spectra, prompting some
skeptics to assert that something had
to be wrong with his camera.

The discovery of such statistical con-
sistency in natural scenes prompted
Field to investigate whether the Gabor-
like receptive fields of cortical neurons
are somehow tailored to match this
structure. He did this by examining
histograms obtained after “filtering”
the images with a two-dimensional
Gabor function—a task requiring the
pixel-by-pixel multiplication of inten-

sity values in the image with a Gabor
function defined within a patch just a
few pixels wide and tall. These his-
tograms tend to show a sharp peak at
zero and so-called “heavy tails” at ei-
ther side. The shape differs greatly
from the histograms produced after
applying a random filtering function,
which exhibit more of a Gaussian dis-
tribution (Figure 8), as does Gabor fil-
tering a random image (such as the one
shown in Figure 2).

The sharp peak and heavy tails turn
out to be most pronounced when the
particular Gabor filter chosen resem-
bles the receptive fields of cortical neu-
rons. This finding suggests that these
neurons are, in a sense, “tuned” to re-
spond to certain patterns in natural
scenes, features, such as edges, that are
typical of these images but that never-
theless show up relatively rarely. So
when presented with an image, only a
small number of neurons in the cortex
should be active; the rest will be silent.
With such receptive fields, then, the
brain can achieve what neuroscientists
call a sparse representation.

Although studies of histograms are
suggestive, they leave many questions.
Might other filters be capable of repre-
senting images even more sparsely, fil-
ters that do not at all resemble the re-
ceptive fields of cortical neurons? And
is the brain achieving a sparse repre-
sentation by encoding just a few fea-
tures and ignoring others? We began
to tackle these questions in 1994. At
that time, Olshausen had just complet-
ed his doctoral thesis on computation-
al models for recognizing objects and
was becoming intrigued by Field’s
work on natural images. Together we
began developing a way to search for
functions that can represent natural im-
ages as sparsely as possible while pre-
serving all the information present.

Because this task turns out to be
computationally difficult, we limited
the scope of our study to small patches
(typically 12 by 12 pixels in size) ex-
tracted from a set of much larger (512
by 512) natural images. The algorithm
begins with a random set of basis func-
tions (functions that can be added to-
gether to construct more complicated
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ones) that are the same size as the im-
age patches under consideration. It
then adjusts these functions incremen-
tally as many thousands of patches are
presented to it, so that on average it
can reconstruct each image using the
smallest possible number of functions.
In other words, the algorithm seeks a
“vocabulary” of basis functions such
that only a small number of “words”
are typically needed to describe a giv-
en image, even though the set from
which these words are drawn might be
much larger. Importantly, the set of ba-
sis functions as a whole had to be ca-
pable of reconstructing any given im-
age in the training set.

As we hoped from the outset, the ba-
sis functions that emerged from this
process resemble the receptive fields of
V1 cortical neurons: They are spatially
localized, oriented and bandpass (Fig-
ure 9). The fact that such functions re-
sult without our imposing any other
constraints or assumptions suggests
that neurons in V1 are also configured
to represent natural scenes in terms of a
sparse code. Further support for this no-
tion has come very recently from the

work of Jack Gallant and his colleagues
at the University of California, Berkeley,
who showed that neurons in the prima-
ry visual cortex of monkeys do, in fact,
rarely become active in response to the
features in natural images.

Our results also shed new light on
the utility of wavelets, a popular tool for
compressing digital images, because
our basis functions bear a close resem-
blance to the functions of certain
wavelet transforms. In fact, we have
shown that the basis functions our itera-
tive procedure provides would allow
digital images to be encoded into fewer
bits per pixel than is typical for the best
schemes now used—for example,
JPEG2000 (a wavelet-based image-
compression standard now under de-
velopment). Together with Michael
Lewicki at Carnegie Mellon University,
we are currently exploring whether
this work might yield practical bene-
fits for computer users and others who
need to store and transmit digital im-
ages efficiently.

Independence: The Holy Grail?
Our algorithm for finding sparse image

codes is one of a broad class of compu-
tational techniques known as indepen-
dent-components analysis. These methods
have drawn considerable attention be-
cause they offer the means to reveal the
structure hidden in many sorts of com-
plex signals. Independent-components
analysis was originally conceived as a
way to identify multiple independent
sources when their signals are blended
together, and it has been quite success-
ful at solving such problems. But when
applied to image analysis, the results
obtained should not really be deemed
“independent components.”

Typical images are not simply the
sum of light rays coming from different
objects. Rather, images are complicated
by the effects of occlusion and by varia-
tions in appearance that arise from
changes in illumination and viewpoint.
What is more, there are often loose cor-
relations between features within a sin-
gle object (say, the parts of a face) and
between separate objects (chairs, for ex-
ample, often appear near tables), and in-
dependent-components analysis would
erroneously consider such objects to be
independent entities. So the most one
can hope to achieve with this strategy is
to find descriptive functions that are as
statistically independent as possible.
But it is quite unlikely that such func-
tions will be truly independent.

Despite these limitations, this general
approach has yielded impressive re-
sults. In a recent study of moving im-
ages, Hans van Hateren at the Uni-
versity of Gröningen obtained a set of
functions that look similar to our so-
lutions in their spatial properties but
that shift with time. These functions
are indeed quite similar to the space-
time receptive fields of the neurons in
V1 that respond to movement in a par-
ticular direction.

Future Directions
Many other investigators are now at-
tempting to formulate schemes for en-
coding more complex aspects of shape,
color and motion, ones that could help
to elucidate the still-puzzling workings
of neurons in V1 and beyond. We sus-
pect that this research will eventually
reveal that higher levels of the visual
system obey the principles of efficient
encoding, just as the low-level neural
circuits do. If so, then computer scien-
tists and engineers now focusing on
the problem of image compression
should keep abreast of emerging re-
sults in neuroscience. At the same time,
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Figure 9. Optimal basis functions the authors determined with their iterative algorithm can en-
code any image that is the size of each patch (12 by 12 pixels). These empirical functions appear
similar to the Gabor-like receptive fields of cortical cells (Figure 7), suggesting that the brain en-
codes visual information using the smallest number of active neurons possible.



neuroscientists should pay close atten-
tion to current studies of image pro-
cessing and image statistics.

Some day, scientists may be able to
build machines that rival people’s abili-
ty to search through complex scenes
and quickly recognize objects—from
obscure plant species to never-before-
seen views of someone’s face. Such feats
would be truly remarkable. But more
remarkable still is that the principles
used to design these futuristic devices
may mimic those of the human brain.
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