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One of the fundamental unanswered questions in visual science regards how the visual system attains a high degree of
invariance (e.g., position invariance, size invariance, etc.) while maintaining high selectivity. Although a variety of theories
have been proposed, most are distinguished by the degree to which information is maintained or discarded. To test whether
information is maintained or discarded, we have compared the ability of the human visual system to detect a variety of wide-
field changes to natural images. The changes range from simple affine transforms and intensity changes common to our
visual experience to random changes as represented by the addition of white noise. When sensitivity was measured in
terms of the Euclidean distance (L2 norm) between image pairs, we found that observers were an order of magnitude less
sensitive to the geometric transformations than to added noise. A control experiment ruled out that the sensitivity difference
was caused by the statistical properties of the image difference created by this transformation. We argue that the
remarkable difference in sensitivity relates to the processes used by the visual system to build invariant relationships and
leads to the unusual result that observers are least sensitive to those transformations most commonly experienced in the
natural world.
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Introduction

Successful visual recognition in a dynamic environment
requires that the processes of recognition show some
degree of visual invariance. From drosophila to primates,
a wide range of studies have demonstrated that recog-
nition can occur over multiple instances despite changes
in the particular position, viewing angle, size, and lighting
of the scene (e.g., Brainard, 2004; Busey, Brady, &
Cutting, 1990; Cutting, 1987; Desimone, 1991; Ito, Tamura,
Fujita, & Tanaka, 1995; Jacobsen & Gilchrist, 1988; Lau,
Rensink, & Munzner, 2004; Logothetis, Pauls, & Poggio,
1995; Rensink, 2004; Rutherford & Brainard, 2002;
Shepard & Metzler, 1971; Tang, Wol, Xu, & Heisenberg,
2004; Tarr & Pinker, 1989; Wallis & Rolls, 1997).
However, although there exist a variety of models that
demonstrate various degrees of invariant recognition
(Fukushima, 1988; Olshausen, Anderson, & Van Essen,
1995; Wang & Simoncelli, 2005; Wiskott, 2004), no
dominant theory has emerged.
Within the vertebrate visual pathway, it is common to

find low selectivity and low invariance at early levels
(e. g., simple cells), with neurons at higher levels showing
both high selectivity (e.g., face selective neurons in IT)

with relatively high invariance (invariant to moderate
changes in position, size or lighting) (Desimone, 1991; Ito
et al., 1995; Wallis & Rolls, 1997). How does the visual
system achieve this combination of selectivity and
invariance? One approach argues that information regard-
ing “what” and “where” are processed through different
pathways, but the information is maintained. Others have
argued that information regarding these transformations is
simply discarded (Cutting, 1987).
In this paper, we use a simple Euclidean metric, for

reasons given below, to determine the extent to which
different types of information are retained by the visual
system. We consider a variety of transformations performed
on images of natural scenes and determine the sensitivity of
human observers to those transformations. The number of
possible natural image transformations is, of course, very
large. Figure 1 shows examples from two broad classes of
transformation, termed here geometric and photometric.
The former refers to changes in the positions of image
pixels, while the latter refers to changes in the intensive
and/or spectral content of image pixels. The geometric
transformations in Figure 1 are affine transformations on
the two-plane (Watt, 2000). Many of these are quite
common in our visual experience. Image “translation”
occurs every time we move our eyes, and an image
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“contraction” every time we move away from an object.
Others, such as “stretch” and “shear,” constitute distortions
that may be less common but occur as the observer moves
through an environment. The photometric transformations
in Figure 1 are of two classes. Uniform photometric
transformations impose the same change to all pixel values:
“flatten,” “brighten,” and “divide” are the examples.
Random photometric or “noise” transformations are ran-
dom perturbations applied either independently to every
pixel, as in the “Gaussian noise” example, or independently
at different image scales, as in the “fractal noise” example.
Of the uniform photometric transformations, “divide” is
probably the most commonly experienced as it occurs
every time there is a reduction in the ambient light level, as
when going from day to night. With the exception of
significant levels of photon noise seen under low light
conditions, the transformations that involve added noise
would normally never occur in our visual experience, and
therefore also constitute distortions.
We use a conventional metric of image difference

that is intuitively appealing due its simplicity. This is
the Euclidean distance E, or L2 norm. If the images are

tri-plane, RGB colored images, as in Figure 1, E can be
calculated using the following formula:

E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1

X3
i¼1

ðpni j qniÞ2

3N

vuuuut
; ð1Þ

where pni and qni are the intensities of the corresponding
pixels in the two images, with i the image plane (i = 1:3 ª R,
G, B), n the pixel (i.e., with unique x, y coordinate), and
N the number of pixels per image. Euclidean distance has
the important property that it defines a straightforward
measure of the distance between two images and provides
the same answer irrespective of the orthonormal basis
used to represent the images, e.g., pixels, Fourier, Haar,
etc. (Horn & Johnson, 1990). We are certainly not arguing
that the Euclidean distance is the proper perceptual
metric. Rather, we argue that E is a relatively neutral
metric, providing a useful measure for comparing the
relative sensitivities to the different types of image
transformation shown in Figure 1. It is widely believed
that simple visual discrimination tasks are mediated by
filters in the early stages of the visual cortex, for example
primate area V1, that are tuned to various orientations and
spatial frequencies (DeValois & DeValois, 1991). Under
the most simplistic model where we assume that the
visual system calculates the differences between images
from the differences between the magnitudes of m linear,
orthonormal filter responses, the Euclidean distance
calculated from the filter responses produces similar
answers to that calculated from pixel intensities. We
should also emphasize that Euclidean distance is a
somewhat unusual metric for describing affine transforms.
In a Euclidean pixel space, most affine transforms
represent a curved trajectory through the space. Although
a monotonic increase in the affine transformation (e.g., a
shift to the left) will typically result in a monotonic
increase in the Euclidean distance, it is not a simple linear
relationship. Therefore, although Euclidean distance is a
valid metric of physical distance between two images and
is easily calculated, we do not expect it to be an accurate
perceptual metric. Indeed, it is the failure of this physical
metric which is the core of this study.
In this paper, we consider three possible hypotheses.

First, if the Euclidean distance provided a good account of
visible differences, then we might expect this metric to
provide an accurate account of thresholds. However, there
is abundant evidence that the Euclidean metric is a poor
predictor of perceived image distortions (e.g., Teo &
Heeger, 1994). Therefore, although this may be the
simplest hypothesis, we do not expect this to produce
accurate predictions.
An abundance of evidence suggests that the visual

system has evolved neural mechanisms that optimally

Figure 1. Example transformations for an image of the Ackee fruit.
The middle baseline image has been transformed into the images
arranged around it. Rotate, stretch, contract, shear, and translate
are affine geometric transformations, and of these, stretch and
shear can also be considered distortions. Flatten, brighten, and
divide are photometric transformations applied uniformly across
the image. Gaussian and fractal are added noise transformations.
The multiplicative noise condition (not shown) looks similar to the
added Gaussian noise condition.
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represent the statistical properties of natural scenes
(Barlow, 1972, 2001; Buchsbaum & Gottschalk, 1983;
Field, 1987; Johnson & Baker, 2004; Olshausen & Field,
2004; Ruderman, Cronin, & Chiao, 1998; Thomson,
1999). Our second hypothesis is that human observers
would be particularly sensitive to the sorts of trans-
formations that commonly occur in the natural world and
therefore relatively sensitive to affine transformations.
However, our third hypothesis leads us to the opposite
conclusion. If the processes involved in perceptual
invariance result from a loss of sensitivity along those
common dimensions (the common transformations), then
we might expect human observers to be relatively
insensitive to these affine transformations.
To test between these predictions, we measured sensi-

tivity to the class of transformations of images of natural
scenes shown in Figure 1, and in two ways that are
illustrated in Figure 2. In both experiments, the task was
to identify which of two images had undergone a pre-
specified transformation, i.e., the task was not to detect an
unspecified transformation. This minimized the uncer-
tainty of the task and, we assume, maximized sensitivity,
in spite of subjects having to pre-learn each transforma-
tion. In the first experiment (Figure 2a), subjects were
presented on each trial with two images of the same
natural scene (different scenes on each trial) and were

required to indicate which of the pair conformed to a
particular transformation. In the second experiment
(Figure 2b), subjects were presented on each trial with
two images of different scenes (different scene-pairs on
each trial) and were required to indicate which of the pair
conformed to a particular transformation. For the second
experiment, only those transformations that could be
considered distortions are applicable, and therefore we
only tested “stretch,” “shear,” and “added noise.” Impor-
tantly, the distortion class of image transformation is the
only class uniquely applicable to natural scenes, since
knowledge of what is “normal” in a scene is pre-requisite.
For the second experiment, we still measured the
magnitude of the transformation in terms of E, even
though the baseline image was not presented with its
transformed version on the same trial.

Methods

Equipment and calibration

The scenes were photographed with a Nikon CoolPix-
7500 digital camera. The digital images were first

Figure 2. Example forced-choice pairs for the horizontal shear condition in the two experiments. In panel a (Experiment 1), the two images
are of the same scene, in panel b (Experiment 2) different scenes. The task for the subject in both experiments was to decide which
stimulus was sheared.
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corrected for the camera’s gamma-nonlinearity, as
detailed elsewhere (Olmos & Kingdom, 2004). The
display monitor was a Sony FD Trinitron 17W, GDM
F-500. The RGB phosphors were gamma-corrected after
calibration using a photometer (OptiCal, Cambridge
Research Systems). Images were displayed using the
VSG graphics board (Cambridge Research Systems)
housed in a 1800-MHz PC computer. Refresh rate was
120 MHz. Matlab version 7 was used for all image
processing tasks.

Stimuli and procedures

For each experiment, 188 different scenes were
employed, and these were taken from the McGill
Calibrated Colour Image database (Olmos & Kingdom,
2004). The scenes represented a range of natural (forests,
mountains, flowers, and fruits) and urban (buildings,
traffic signs, man-made objects) environments photo-
graphed under different illumination conditions (sunny
and cloudy) and distances (0.5 m–1000 m). The camera’s
smallest aperture setting (f 7.4) was chosen to capture the
images with minimum within-image differences in focus.
The images were presented on a mid-gray background of
42 cd/m2. Intensity resolution was 24 bits (256 levels for
each R, G, and B image). Each image was circular with a
diameter of 300 pixels subtending 11 deg at the viewing
distance of 100 cm. The stimulus edges were softened
using a 0.55 � 0.55 deg Gaussian filter with a standard
deviation of 2 deg. Each stimulus was presented for a total
of 500 ms with a temporal ramp of 100 ms at stimulus
onset and offset.
For each scene, an original plus six levels of trans-

formation were generated. The six levels were chosen to
ensure a range of approximately 50–100% correct. The
two images on each trial were presented in a two-
interval forced-choice (2IFC) procedure, with an inter-
stimulus interval of 500 ms. Subjects indicated by key
press the image that conformed to the particular trans-
formation. Practice sessions ensured that for each type of
transformation subjects understood the task and the key
allocation, which was adapted for each type of trans-
formation. For example, in the “rotation” condition,
subjects pressed the left or right key depending on
whether the second of the 2IFC pair appeared rotated
clockwise or anticlockwise relative to the first. For the
“translation vertical” task, subjects pressed the top or
bottom key depending on whether the second of the
2IFC pair appeared shifted upwards or downwards
relative to the first. During each session of 96 trials
one type of transformation was tested (the order of
transformations was random), with the 6 levels of
transformation presented 16 times each in random order.
The scenes on each trial were randomly selected from
the 188 available, with the constraint that a given scene
would be presented once only. There were 5 repeat

sessions for each transformation, making a total of 480
trials per transformation.

Image transformations
Geometric

All geometric transformations were affine transforma-
tions, achieved using a mapping function that related
points in the original image to corresponding points in the
transformed image. The procedure involved two steps. In
the first step, the pixels were rearranged using a matrix
transformation of the general form:

xV
yV
1

2
4

3
5 ¼

m1;1 m1;2 m1;3

m2;1 m2;3 m2;3

m3;1 m3;2 m3;3

2
4

3
5

x
y
1

2
4

3
5; ð2Þ

where x, y are the original and xV, yVthe transformed image
pixel coordinates. For the four classes of geometric
transformation, the matrix coefficients were

Scale
s1 0 0

0 s2 0

0 0 1

2
4

3
5

Rotate
cosE jsinE 0

sinE cosE 0

0 0 1

2
4

3
5

Translate
1 0 0

0 1 0

t1 t2 1

2
4

3
5

Shear
1 h1 0

h2 1 0

0 0 1

2
4

3
5;

ð3Þ

where s1 and s2, t1 and t2, and h1 and h2 are the
transformation levels, with subscripts 1 and 2 for the x
(horizontal) and y (vertical) coordinates. E is orientation in
degrees. For the scale transformation, s1 and s2 were
covaried. For the stretch horizontal transformation, s2 was
set to zero while s1 was varied, and similarly for the
horizontal and vertical versions of the translation and
shear transformations.
The second step involved allocating pixel intensity values

for the resulting non-integer x’s and y’s. We employed a
bi-cubic interpolation method, in which the new pixel
value was the weighted average of the four neighboring
pixel values. Although the range of transformations was
tailored to each subject to ensure an average performance
of about 75% correct, the total range across subjects for
the different geometric transformations was 0.2–52% of
image width/height for scaling (specifically contraction);
0.1– 45 deg for rotation; 0.001–1.3 aspect ratio for shear;
and 0.1–5.7% of image height/width (corresponding to
0.011–0.63 deg) for translation. The 6 levels of each
transformation were spaced logarithmically.
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Photometric—uniform

To flatten or reduce the contrast of the image, we
decreased the range of pixel intensities (0–255) in each R,
G, and B plane according to the formula

If Iðx; yÞ 9 M then

IVðx; yÞ ¼ ½Iðx; yÞj Iðx; yÞ� * ð1jkÞ þ Iðx; yÞ

If Iðx; yÞ GM then

IVðx; yÞ ¼ ½Iðx; yÞj Iðx; yÞ� * ð1jkÞ þ Iðx; yÞ;

ð4Þ

where I(x, y) is the original, IV(x, y) the transformed image
plane, and M the average value of the original image
plane. k determined the degree of flattening. The k values
spanned 0.05–0.45. To brighten the image, all pixel RGB
values were incremented by a specified amount, ranging
from 1 to 38. To divide the image, all pixel values were
divided by an amount ranging from 1.01 to 1.31. As with
the geometric transformations, the 6 levels of each
transformation were spaced logarithmically.

Photometric—random noise

For the added Gaussian noise condition, each R, G, and
B pixel value (0–255) was perturbed by an amount
randomly drawn from a Gaussian probability distribution
with mean zero and standard deviation A equal to k, where
k ranged from 1 to 15. Multiplicative noise was achieved
by setting A proportional to the pixel value, i.e., A = k I I
(x, y), where k ranged from 0.0002 to 0.0019. The added
fractal noise images were generated by adding to each
RGB image plane a fractal noise mask (Simoncelli, 2003)
whose power spectral density fell with spatial frequency f
according to 1/f n, with n set to 3 and the image variance
normalized to 1. The choice of exponent n = 3 may seem
odd because natural scenes have an average exponent of 2
(Field, 1987). However, we measured the spectra of our
actual test images and found they had an average
exponent of 3.2, and so took 3 rather than 2 for our
fractal noise. The steeper-than-normal power spectra of
our images is likely caused by the fact that they contained
a more than average number of close-ups of objects. The
different levels of fractal noise were achieved by multi-
plying the noise mask by a constant k that varied in
logarithmic intervals from 1 to 12.

Data analysis

For each trial, the Euclidean distance E (between the
original and transformed image) was recorded along with
the response “correct” or “incorrect.” Although there
were 6 discreet levels for each transformation, the

computed values of E for each level of a given trans-
formation varied according to the image. In order to fit
psychometric functions, the Es were divided into 6 “bins”
for each transformation. The first bin was set to have a
minimum of zero, while the last, sixth bin was set to have
a maximum equal to the maximum E for that trans-
formation. The first bin “divider” was determined iter-
atively to be the value such that when the remaining bin
dividers were logarithmically spaced, the between-bin
variance in the number of trials was minimized. This
method ensured that the trials were distributed as evenly
as possible between bins under the constraint that all
except the first bin were logarithmically spaced (because
the first bin began at zero). After the Es were binned, the
mean log E, proportion correct, and number of trials were
calculated for each bin. The psychometric functions
relating proportion correct to log E were fitted using the
logistic function: 0.5 + 0.5 I exp[(log Eja)/b]/{1+exp
[(log Eja)/b]}, where a is the threshold at the 75%
correct level and b is the slope. The fitting procedure used a
weighting function given by the reciprocal of the binomial
standard deviation Ai =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpið1jpiÞ=Ni

p
, where pi and Ni

are the proportion correct and number of trials for the ith
log E level.

Results

Two female student observers (KW, SG) participated in
the first two experiments andwere unaware of their purpose.
Figure 3 shows example psychometric functions for KW’s
added Gaussian noise and vertical translation conditions
from Experiment 1. The psychometric functions give the
mean proportion of correct trials as a function of log E.
The threshold was calculated as the value of log E giving
75% correct (see Methods for details). Threshold Es (note:
not log Es) for all transformations are shown in Figure 4a
for Experiment 1 and Figure 4b for Experiment 2.
Our results show that for a range of different types of

natural image transformation measured in terms of Eucli-
dean distance E, what the eye sees best is added noise.
How much more sensitive our subjects are to added noise
can be gleaned from a comparison of the Gaussian noise
condition, which had the lowest thresholds, with the
average of the geometric transformations, which had the
highest thresholds.
For the first experiment, the Gaussian noise thresholds

were approximately 11 times, and for the second experiment
approximately 14 times lower than the mean of the
geometric transformation thresholds. In all instances, the
noise conditions produced lower thresholds than the uniform
photometric transformations.
To illustrate how different is our sensitivity to affine

geometric transformations compared to added white noise,
consider Figure 5. The top image has been transformed
into the two images shown beneath, the one on the left by
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adding white noise, the one on the right by stretching the
image horizontally. The amount of transformation how-
ever is identical in terms of Euclidean distance. While it is
easy to see the changes in the left image, the changes in
the right image can only be seen with careful scrutiny.
Why are the geometric transformations so much more

difficult to detect compared to added noise? One possi-
bility is that the answer lies in the shape of the histogram
of pixel differences between the original and transformed
images. The pixel-difference histogram captures the first-
order (point-wise) statistical differences between two
images. Figure 6 shows the pixel-difference histograms
for an image transformed by the same Euclidean distance
in one of three ways: translation, brightening, and addition
of Gaussian noise. The pixel-difference histogram is by
definition a Gaussian for the added Gaussian noise con-
dition. For translation it is more kurtotic, and for brightening
it is a single-point function (all pixels are incremented by the
same value) making it highly kurtotic. The marked differ-
ence in the shape of these pixel-difference histograms for the
various transformations raises the possibility that pixel
histogram shape is a factor determining thresholds. At face
value, however, it would seem unlikely that kurtosis is the
critical statistic since the relative magnitudes of thresholds
are geometric 9 photometric 9 noise, whereas for the image

Figure 4. Euclidean distance E thresholds for all types of transformation from both experiments and for both subjects. Results from
Experiment 1 are shown in green, Experiment 2 in red. H = horizontal, V = vertical. Subject KW top, SG bottom. Viewing distance was 1 m.

Figure 3. Example psychometric functions for KWs Gaussian
noise (red symbols) and vertical translation (green squares)
conditions from Experiment 1. The proportion of correctly detected
transformations is plotted against the log Euclidean distance
between the transformed and untransformed image. Error bars
are binomial standard deviations. Continuous lines are best fitting
logistic functions. The horizontal black line shows the 75% correct
level, and the vertical dashed lines show the threshold log
Euclidean distance for each condition.
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in Figure 6, which is typical, the magnitudes of kurtosis are
photometric 9 geometric 9 noise.
Nevertheless, it would be prudent to test whether the

statistics of the difference image, whose first-order
properties are reflected in the pixel-difference histogram,
is the reason for the relatively high geometric trans-
formation thresholds. An anonymous reviewer suggested a
way of doing this.
Take a baseline image IB and transform it, say by

rotation, to image IT. Call the difference between these
two images ID = IT j IB. Any difference between two
images (even a difference caused by an affine trans-
formation) can be described in terms of this difference
image. In the third control experiment, we compare the
thresholds for detecting the increment versus the decre-
ment of this difference image. That is we compare the
thresholds for

IT versus IB

and IC versus IB;
ð5Þ

where IT is the incremental and IC the control, decre-
mental image, defined as

IT ¼ IB þ ID

IC ¼ IB j ID:
ð6Þ

Given that

ID ¼ IT j IB; ð7Þ

the control image can also be written as

IC ¼ IB j ðIT j IBÞ

¼ 2IB j IT:
ð8Þ

Figure 7 provides an example of the two images that are
created by adding and subtracting the difference image.
The difference image in the two cases is identical. We can
therefore ask whether an increment (which corresponds to

Figure 5. The top image has been transformed into the bottom two images by (left) the addition of white noise and (right) by stretching the
image horizontally. The Euclidean distance between the top and each of the two transformed images is identical.
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an affine transform) is equally distinguishable from a
decrement of equal magnitude. The image IT shows a
1 deg rotation, whereas its counterpart image IC appears to
be edge-sharpened and is clearly much easier to detect. If
indeed easier to detect, this suggests that the structure of
the difference image is not in itself the main factor
producing the relatively high thresholds for the geometric
transformations.
In order to create the IC images, it was necessary to

reduce the contrasts of the images by a factor of 3 to
prevent pixel values going outside the 0–255 range
(underflow/overflow) (see Figure 7). Pilot studies con-
firmed the impression obtained in Figure 7 that we are
much more sensitive to the IC transformation, and in order
to obtain meaningful psychometric functions, we had to
make the task more difficult by increasing the viewing
distance to 2.8 m. We tested three geometric trans-
formationsVrotation, translation, and shear. Two of the
authors (AO and FK) served as subjects.

The results are shown in Figure 8. Thresholds for the IC
transformations are about 4 times lower than their
conventional geometric transformation counterparts (note
again the logarithmic spacing on the y-axis). This is
conclusive evidence that the relatively high thresholds for
the geometric transformations are not caused by the
statistics of the difference between the baseline and
transformed images.
As far as we are aware, these results also demonstrate

the largest difference ever obtained between a threshold
for detecting an increment and a threshold for detecting an
equivalent decrement.

Discussion

These results support the notion that the human visual
system is relatively insensitive to the types of image

Figure 6. Image (top) transformed by the same Euclidean distance (E = 40) by translation (left), brighten (middle), and addition of
Gaussian noise (right). The resulting pixel-difference histograms are shown below. Note that the range on the y-axis for the brighten
histogram is greater than for the other two histograms. Kurtoses for the three histograms are (left to right) 7.6, 12512, and 3.0.
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transformation that are common to our visual experience.
The work implies that invariance is partly achieved
through a loss of information. Observers were at least
10 times less sensitive to the types of geometric trans-
formation that would likely be involved in perceptual
invariance than they were to added white noise.
As argued in the Introduction, Euclidean distance E is

not an accurate perceptual measure of image difference.
However, as a physical measure, it can be used to
compare sensitivities across all types of transformation.
It is precisely the fact that threshold Es are so different for
the geometric and noise transformations that we can
appreciate that E is an inadequate predictor of perceived
image difference.
It is also true that different images produce different

values of E for a given unit of transformation (e.g., for a
5 deg rotation), though this fact in itself does not preclude
the possibility that E could predict performance better
than the unit of transformation itself. Thus, it is conceiv-
able that a different set of images would produce different
threshold Es. However, given that we sampled a large

number of images with a variety of different types of
natural scene, we are confident that had we used a
completely different image set, the pattern of results
would nevertheless be the same.
It has been argued that our ability to view 2D images

and movies from a wide variety of viewing angles follows
from our insensitivity to the transformations produced by
off-angle projections (Busey et al., 1990; Cutting, 1987),
producing the apparent invariance to viewing angle.
Indeed Cutting (1987) found that with rotating wire
frames, we are more sensitive to non-affine changes in
comparison to affine. We are never likely to encounter a
3D object twice from the same exact viewing angle
stimulating the same collection of neurons in V1. It is
therefore critical that at some point in the visual system,
the system becomes invariant to common forms of
transformation.
The studies by Cutting and colleagues, as well as others

dealing with perceptual invariance (see Introduction),
have considered how objects are recognized under various
transformations. In the present study, rather than measuring

Figure 7. The baseline image IB (top) has been rotated by 1 deg to produce the transformed image IT (bottom left). As with any image
transformation, this rotation can be treated as a sum of the original image and the difference image ID. The control image IC (bottom right)
is obtained by subtracting the difference image from the standard. Both transformed images have identical Euclidean distances from the
baseline (E = 9.1) and identical pixel-difference histograms. Note that the contrasts of the images have been reduced to prevent pixel
overflow/underflow in the IC image.
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the recognition of objects undergoing various transforma-
tions, we have measured sensitivity to the transformations
themselves. That this is the other side of the coin of
perceptual invariance is evidenced by our finding that we
are relatively insensitive to precisely those transformations
that have little negative impact on object recognition, such
as rotation, scaling, and translation.
Wang and Simoncelli (2005) have proposed an image

similarity metric that is simultaneously insensitive to
luminance change, contrast change, and spatial trans-
lation. The key idea behind the metric is that it makes use
of the fact that these image changes lead to consistent
magnitude and/or phase changes in local wavelet coef-
ficients. It would be interesting to see how well the
similarity metric predicts the results of the present study.
Wang and Simoncelli point out that small scaling and
rotation of images can be locally approximated by trans-
lation. This may be the reason why our stretch and shear
conditions, which unlike the other geometric transforma-
tions distort the images in a less common way, never-
theless produce comparable thresholds. In other words, the
process involved in perceptual invariance may be com-
puted over relatively small regions of the image.

The results from single unit recordings of higher level
neurons in the mammalian visual system (e.g., inferotem-
poral cortex) have demonstrated high degrees of selectiv-
ity (e.g., to faces) while maintaining relatively high
invariance to position, lighting, pose, etc. (Desimone,
1991; Ito et al., 1995; Logothetis et al., 1995). The
insensitivity to geometric image transformations shown in
this studymay be a result of the processes used to build these
higher level invariances. If this is true, we would predict that
higher level neurons would show quite similar responses to
the various transformations shown here, even though lower
level neurons might show very different responses.
The 10-fold or more decrease in sensitivity to the

geometric distortions might be described as a form of
“change blindness” (Simons & Ambinder, 2005). How-
ever, the fact that similar sensitivities were found for the
distortion transformations in the same-scene and different-
scene comparisons (Figure 4) suggests different perceptual
processes from those involved in change blindness.
Moreover, the high sensitivity to noise is not predicted
by change blindness theories. High sensitivity to noise
also cannot be explained away on the grounds that the
amplitude spectra of the added noise is so different from
that of the test images that the test images fail as maskers.
Sensitivity to added fractal noise, whose amplitude spectra
was matched to those of our test images (see Methods),
was also much higher.
The interpretation we prefer is one that considers

transformations as movements along an image space
manifold. In such a model, the images and objects in the
world are points in high-dimensional state space (Field,
1994; Field & Wu, 2005). The geometric and uniform
photometric transformations form a collection of curved
manifolds (i.e., smooth surfaces) in this state space. The
addition of random noise is equivalent to a movement in a
random direction and will likely be a movement away
from the manifold of common transformations. Our
results suggest that we are very sensitive to movements
away from (or towards) the probable manifold (e.g.,
addition of noise), but relatively insensitive to movements
along the probable manifold (e.g., the common trans-
formations) (we are presumably also insensitive to move-
ments between points that are off the manifold, for
example between identical images with independent
samples of white noise). Therefore, under this interpreta-
tion, our results suggest that we are an order of magnitude
more sensitive to movements away/towards the manifold
relative to movements along the manifold.
There are two important caveats to this conclusion. The

first is that we have not explored all types of trans-
formation, and there may be ones for which our pattern of
results does not apply. For example, there is the “fish-eye”
transformation, in which the region around fixation is
selectively expanded (Lau et al., 2004). The fish-eye
transformation can be considered a combination of scaling
and shear, so we might expect thresholds for the fish-eye
to be similar to these transformations. A second caveat is

Figure 8. Results from control experiment. IB = baseline image;
IT = difference-added transformed image; IC = control, difference-
subtracted transformed image. H = horizontal. Subject AO top, FK
bottom. See text for details.
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that our results are likely only applicable to transforma-
tions that are significantly separated over time or space. If
the two images in the translation forced-choice pairs were
presented consecutively without the 500-ms inter-stimulus
interval, they would constitute a two-frame apparent
motion sequence, and displacement thresholds for detect-
ing the motion direction of such sequences are known to
be less than a minute of arc (Baker & Braddick, 1984;
Nakayama & Tyler, 1981). Therefore, our results are
arguably relevant primarily to situations where the spatial
properties of natural scenes have been coded into some
form of short-term memory. We are currently investigat-
ing how our sensitivity to these distortions is affected by
the temporal interval between them.
On the other hand, our 10-fold difference in sensitivity

maybeanunderestimateof thatobtainedhadweusednatural
scenes that filled the visual field. Our images were presented
in a fixed-size circular window 11 deg in diameter on a
neutral gray background. For the geometric transformations,
the accretion and deletion at the edges of the stimulus
window provided a visual cue that would be unavailable in a
full-field scene because in the far visual periphery spatial
resolution is so poor. A similar argument applies to the
uniform photometric transformations. The luminance-
contrast between the image and its background in the
“brightness” and “divide” conditions and the contrast–
contrast between the image and its background in the
“flatten” condition are cues that would also be unavailable
in a full-field scene, again because sensitivity to these
dimensions in the far periphery is poor. Indeed Schubert and
Gilchrist (1992) have shown that when viewing a Ganzfeld,
or homogenous visual field, human test subjects are
insensitive to the slow changes in light level exemplified
by our brighten and divide transformations. None of these
edge cues would have been available for the noise
transformations, yet still their thresholds were the lowest.
Notwithstanding the possibility that the thresholds for

the uniform photometric transformations may have been
higher had we used full-field stimuli, they were never-
theless lower than the geometric transformation thresh-
olds. This may be because the geometric transformations
are more ubiquitousVthey occur whenever we move our
bodies or eyes. The uniform photometric transformations
would normally arise from physical changes in the scene
itself and are thus less frequently experienced. Another
possibility is that the visual system prefers not to discard
information about uniform photometric changes because
they provide important information about the illuminant,
which some recent studies have suggested is encoded for
the purpose of color constancy (Golz & MacLeod, 2002;
Maloney, 2002; Smithson, 2005; Zaidi, 2001).
There is currently a large literature that attempts to

model human visual sensitivity with regard to the
distortions created by various compression algorithms
(Chandler & Hemami, 2003; Teo & Heeger, 1994; Wang,
Bovik, Sheikh, & Simoncelli, 2004). We believe our
results support the notion that perceptual space must be

considered in terms of a non-Euclidean transform of pixel
space. However, we feel that our results make a further
and rather unusual claim: that we are least sensitive to the
most common types of transformation and most sensitive
to the highly unlikely random changes. We believe that
the 10-fold increase in sensitivity to additive noise reveals
a very important process involved in building invariant
representations in the visual system. It argues that at least
for small affine changes, the visual system does sacrifice
information in order to achieve this invariance. Further-
more, this loss of information does not result from an
overall insensitivity to change but to the precise types of
changes most likely to occur under natural viewing.
Is this insensitivity learned from exposure to natural

transformations? Or would we find evidence for this
insensitivity in newborns? The results here do not provide
an answer. Certainly some degree of invariance is
required at birth so that learning can occur across multiple
instances. However, if it is learned, these results imply
that experience is helping the visual system to become
insensitive to the most common forms of transformation
and distortion.

Conclusion

The human visual system appears to be relatively
insensitive to the types of image transformation that are
common to our visual experience. This implies that
spatial invariances are partly achieved through a loss of
information.
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