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Glossary

Kurtosis : The fourth statistical moment of a distribution; measures the degree to which a distribution

is peaked and heavy-tailed; a Gaussian has a kurtosis of 0.

Natural scene : An image of the natural world.

Sparse code : A method of representing information that shows a low activity ratio; a code for which

most coding units are inactive most of the time.

Abstract

Sparse coding has been proposed as a guiding principle in neural representations of sensory

input, particularly in the visual system. Because sparse codes are defined as representations with low

activity ratios—i.e., at any given time a small proportion of neurons are active—they are sometimes

proposed as a means to help conserve metabolic costs. Although we accept that such metabolic

costs play a role in evolutionary selection, we also argue that sparse coding offers a useful solution to

the problem of representing natural data because such a scheme allows the system to take advantage

of the sparse structure of the sensory environment. Given the highly regular and sparse structure of

natural data (e.g., natural scenes), a variety of recent studies suggest that the sparse coding in the

cortex is an adaptation that has evolved to offer an efficient strategy for storing and building

associations with natural inputs. However, highly selective sparse codes require a large number of

neurons and can also pose problems for learning. We argue that larger brains have evolved strategies



4

that allow neurons to be both highly selective and invariant across irrelevant dimensions. We argue

that this invariance is what allows such highly sparse codes to be useful.

6.03.1  INTRODUCTION : OPTIMALITY IN BIOLOGICAL SYSTEMS

For any biological system, an account of why the system is structured as it is requires

consideration of a number of interacting forces including the uses (or goals) of the system, the

environment in which the system must function, and the constraints that history and biology put on

the design. It might seem reasonable to assume that the constraints of evolution and development

play a large role in determining the design of any neural system. However, a range of recent studies

have argued that neural systems have found highly efficient solutions for representing environmental

information. These studies have explored topics from retinal coding (Sterling, 2004) to the

computations provided on the semicircular canals with respect to head rotations (Squires, 2004) to

the optimal cortical layout that minimizes neural wiring (Van Essen, 1997). In all these studies, there

remain intriguing questions regarding how close these solutions are to optimal, and how evolution

and development lead to this optimality.

In this chapter, however, we focus on a general aspect of sensory representation called sparse

coding. We argue that there is widespread evidence of such coding in neural systems across a variety

of species. We look briefly at the question of what is meant by sparse coding and then ask why

sensory systems would profit from performing such coding. We argue that the natural environment

is inherently sparse and codes that take advantage of this structure can be both metabolically

efficient and useful for learning. However, the constraints involved in producing a highly sparse

code can be severe: if representing each object and pose requires a different set of neurons, the

system would need a very large number of neurons indeed. We believe that many vertebrates have

developed a strategy of combining high sparseness with invariance, a strategy that overcomes the
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combinatorial explosion of a highly sparse code. In this chapter, we address the extent to which

sparseness is an optimal coding solution for natural data, and the additional processing strategies

that may have shaped cortical evolution in vertebrates.

6.03.2  DEFINING SPARSE CODING

Sparse coding generally refers to a representation where a small number of neurons are active,

with the majority of the neurons inactive or showing low activity (e.g., Field, 1987; 1994; Rolls and

Tovee, 1995).  In his influential 'single neuron doctrine,' Barlow (1972) suggested sparseness as one

of the principles important to sensory representation.  However, sparse coding in its extreme form

results in a representation sometimes called a 'grandmother cell' code. In such a code, each object in

the world (e.g., your grandmother) is represented by a single cell.  One might argue that a large brain

with tens of billions of neurons can certainly handle a few hundred thousand object-level neurons.

And there are a range of studies showing there exist neurons that can be highly selective to faces and

other objects (e.g., Kendrick and Baldwin, 1987; Quiroga, et al. 2005). However, those promoting

the usefulness of sparse representations are not proposing that the ultimate goal is to have one

neuron for every object—and certainly not for a particular view of every object. We believe that

sparseness helps learning and prediction even at early stages of sensory processing, like those found

in V1. But too much specificity or sparseness can actually make learning harder. We will explore this

question later in the chapter.

Two lines of evidence support the notion that sparse representations are common in neural

systems: the first comes from physiology, the second from computational and theoretical research.

In each case, the evidence requires a definition of sparseness. There have been several definitions of

sparseness and a number of ideas regarding what sparse codes actually represent.
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Sparseness can be defined over a population of neurons at a given point in time (population

sparseness) or it can be measured for a single neuron over some window of time—the latter is called

temporal or lifetime sparseness, (Willmore and Tolhurst, 2001) and it is sometimes referred to as

non-parametric selectivity (Lehky, Sejnowski and Desimone, 2004). For a given distribution of

responses, we obtain a histogram of activity. One might think that the simplest definition of the

sparseness of this distribution is to simply measure the proportion of active neurons, or how often a

neuron is active. However, the histogram of activities is usually defined over a window of time and is

therefore not binary. In response to any population of stimuli (e.g., natural scenes), one typically

obtains a distribution of activities (a distribution of spike probability), so the measures of sparseness

refer to the relative shape of the distribution.

Two definitions of sparseness are widespread. The first—the Treves-Rolls measure (Equation

1)—is more appropriate for measuring the sparseness over time for real spiking neurons (Rolls and

Tovee, 1995). The second definition uses kurtosis (the fourth statistical moment of a distribution) as

its metric (Equation 2) and it is more useful for modeled neurons and computational studies, where

a comparison of different codes and transforms is necessary (Field, 1994).
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These measures are applied to histograms of responses over a population of neurons, or for a given

neuron over time. With the Treves-Rolls measure, the sparseness approaches zero as the neuron is

either off or highly on (for a given time window). With the kurtosis measure, large values occur

when a response distribution deviates maximally from the Gaussian state by being sharply peaked

and heavy-tailed. Highly kurtotic behavior produces a relatively high probability of either a small or

large response, and a relatively low probability of a mid-level response. Both measures can be

sensitive to outliers.

6.03.3  PHYSIOLOGICAL EVIDENCE FOR SPARSE CODING

Much of the discussion in recent years regarding sparse coding has come from the

computational and theoretical literature but there is considerable physiological evidence for sparse

representations in most biological systems. For a neuron with a full response and refractory time of

5 msec, the maximal firing rate would be 200 Hz. A system that is providing a maximal information

rate would fire at approximately half the time, i.e. at 100 Hz. Although neurons may reach such

rates, neurons do not maintain these rates for more than brief periods. We do not know of any

neural systems that maintain such high firing rates for extended periods.

Such a high firing rate would require considerable energy resources, so much so that Attwell and

Laughlin (2001) argue that the limited biochemical energy available for producing action potentials

must limit the average firing rates of neurons to less than 1 Hz. Further, Lennie (2003) estimates that

the limited resources imply that at any given time, only 1/50th of any population of cortical neurons

can afford to show high firing rates. Therefore, for biochemical reasons alone, we should expect a

considerable degree of both lifetime and population sparseness. Olshausen and Field (2005) further

argue that even in areas that have been well studied—areas like V1—these low average firing rates
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imply that a significant number of neurons will have such low firing rates as to be missed entirely by

the typical search strategies.

As noted by Olshausen and Field (2004), there are a number of studies suggesting that many

neural systems utilize highly sparse codes. DeWeese and colleagues (2003), recording from auditory

neurons in the rat, have demonstrated that neurons in A1 can reliably produce a single spike in

response to a sound.  Evidence from olfactory systems in insects (Perez-Orive et al., 2002;

Theunissen et al., 2003), somatosensory neurons in rat (Brecht and Sakmann, 2002), and recordings

from rat hippocampus (Thompson and Best, 1989) all demonstrate highly sparse responses.

Prefrontal cortex shows similar sparseness in behaving rhesus monkeys (Abeles, Vaadia and

Bergman, 1990). As the authors of the latter study say, most areas of association cortex are "not

carrying out any computations for the majority of the time."

Motor neuron representations are often described as a population code, where it is proposed

that the accuracy of a movement is guided by the degree of activity of a relatively large population of

neurons (see Georgopoulos, 1986). Here too, we find evidence of sparse responses. Some motor

neurons in layer 6 of rabbit motor cortex will produce just one spike during some movements

(Beloozerova, Sirota and Swadlow, 2003). And stimulation of a single neuron in the rat is sufficient

to deflect a whisker (Brecht et al., 2004).

With respect to sparse coding, the most widely studied sensory system is the visual system. Much

of this work, which we discuss below, has been motivated by information theoretic issues. The area

also contains a wealth of experimental data. In inferotemporal cortex (IT), a wide range of studies

supports the notion that neurons are selective to high-level object dimensions, and to features such

as faces and hands. Such neurons are believed to show some degree of invariance over position, size,

pose, brightness, etc. Nevertheless, unless we are to assume that such objects fall within the neuron's

receptive field at least half of their waking life, we should expect these neurons to show a high
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degree of sparseness. Indeed, Baddeley et al. (1997) found that cells in IT show sparse responses to

natural stimuli, to a similar degree as do cells in V1.

Much of the most interesting work tying together the statistics of natural signals and physiology

comes from work on the responses of V1 neurons. Vinje and Gallant (2000, 2002) found that V1

neuron responses in macaque become more and more sparse as the size of a natural stimulus is

increased beyond the classical receptive field. Stimulation in the classical receptive field also

produced sparseness, which could reflect the rather arbitrary nature of the classical/non-classical

delineation. Moreover, stimulation in the nonclassical receptive field showed the following results:

1. Increased sparseness for individual neurons during repeated presentations (lifetime

sparseness).

2. Increased sparseness across the population of neurons tested (population sparseness).

3. Decreased correlation in neighboring neurons, thereby whitening the response.

The results presented here provide examples of the sparse behavior of neurons in primate visual

cortex under naturalistic conditions. Although we cannot argue that a sparse coding strategy is

ubiquitous in the cortex, these results do support the implication that sparse coding is widespread in

the nervous systems of the mammals tested. We also find evidence of sparse coding across a variety

of non-mammalian species. In addition to the creatures mentioned above, the selectivity of sensory

neurons has been supported by studies in amphibians (e.g., Ewert, 1980), turtles (Ammermüller et al.,

1995) and insects (e.g., Perez-Orive et al., 2002; Strausfeld and Lee, 1991; Srinivasan et al., 1993;

Lehrer, 1994).

Any form of selectivity implies that neurons will show a degree of sparseness in the natural

environment, since selectivity by definition means neurons respond only to a portion of the possible

environmental stimuli. Answering the question of why sensory systems show highly selective

responses will require innovative ways of thinking about sparseness. In the next section we consider
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an information theoretic approach to sparse coding and we compare this to an approach that argues

for sparse coding as a result of the metabolic constraints on neural firing. We argue that both

approaches will likely be needed to explain all aspects of sparse coding in neural systems.

6.03.4  TWO VIEWS OF SPARSE CODING

6.03.4.1. Maximizing Information Transfer

Consider a neuron, or population of neurons, that has a mean firing rate and some distribution

around that mean. With a limit on the range of possible firing rates, the maximum information

transfer occurs when all states of the channel are used with equal frequency—a flat distribution of

firing rates.  If the bound on a distribution is instead the variance of the responses (rather than the

range of responses), the distribution with the greatest information rate (greatest entropy) is a

Gaussian. The visual system appears to follow neither of these models. A sparse code means that

neural firing rates will show a highly peaked, non-Gaussian distribution; i.e., one that does not

produce maximum information transfer. Moreover, as sparseness increases, the information rate

drops. Why might this be a good idea?

In general, we argue that the information rate of the system should match the information rate

of the input. Natural stimuli are not random. As far as the visual system is concerned, natural scenes

are not arrays of random points of light. Rather, they are constrained by strong correlations between

neighboring regions, and image discontinuities are usually defined by edges. This predictability

implies that a high information rate is simply unnecessary. By taking advantage of the redundant

properties of images, sensory codes can get away with sending less information and using fewer

spikes.

For example, consider a collection of 5 x 5 pixel images that each contain one block letter of the

alphabet. If we looked at the histogram of any given pixel, we might discover that the pixel was on
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roughly half the time. However, if we were to represent these letters with templates that respond

uniquely to each letter, each template would respond just 1/26th of the time. This letter code is

more sparse—and more efficient—relative to a pixel code. Although no information is lost, the

letter code would produce the lowest information rate.

Moreover, a representation that was letter-based would provide a more efficient means of

learning about the associations between letters. If the associations were between individual pixels, a

relatively complex set of statistical relationships would be required to describe the co-occurrences of

letters (e.g., between the Q and U). Sparseness can assist in learning since each unit is providing a

relatively complete representation of the local structure (Field, 1994).

Of course, the natural world does not consist of letters. Natural scenes are highly structured and

can be modeled to a first approximation as a sparse collection of local features (e.g., edges). Early

work by one of us (Field, 1987; 1994) showed that if the receptive fields of V1 neurons are modeled

as a collection of linear templates, then the responses of those neurons to natural scenes are highly

sparse. Furthermore, when the parameters of the modeled neurons were altered from those of V1

neurons, the sparseness dropped, suggesting that the parameters were near to optimal given the

constraint of having a linear array of model neurons.

A stronger test of this hypothesis was developed by Olshausen and Field (1996), who trained a

neural network to find the most sparse representation for a population of image patches drawn from

natural scenes. The network was trained to developed a set of filters that would maximize sparseness

and losslessness in its representation of natural scenes. Given these two criteria, the network settled

on a set of filters with considerable similarity to simple cell receptive fields in V1.

_________________________________________________

Insert Figure 1 about here

_________________________________________________
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This basic sparse coding algorithm is quite similar to techniques that search for independent

solutions by minimizing response entropy (that is, by searching for non-Gaussian response

histograms). The family of these techniques has been called independent components analysis or

ICA (Bell and Sejnowski, 1997). The name ICA is a bit unfortunate since the solutions are almost

never independent, given natural input. But the approach has been applied to a wide range of

problems and it has been employed to account for a variety of properties in early visual neurons

including spatio-temporal tuning (e.g., van Hateren and Ruderman, 1998) and spatio-chromatic

properties (e.g., Hoyer and Hyvarinen, 2000), and generalization of the approach has been used to

model some nonlinear properties of neurons (Hyvarinen and Hoyer, 2000) In early vision, Graham,

Chandler and Field (2005) show evidence that sparseness is likely a factor contributing to the utility

of center-surround receptive field organization, along with decorrelation and response gain.

Furthermore, sparse codes of natural sounds have been shown to produce temporal response

profiles with properties similar to those of early auditory neurons (Lewicki, 2002).

This entire line of work suggests that sparseness in neural firing is primarily a result of efficiently

matching the neuron’s response properties with the sparse statistical structure of the environment.

There remain a number of questions as to how a biological system might achieve this efficient

representation. Although the particular method used by Olshausen and Field (1996) may not be

biologically plausible, it is argued that there exist learning algorithms that could train a system to a

achieve a sparse code. The advantage of learning such a code is that the properties of individual

neurons need not be predetermined or coded in the genome of the organism. Rather, what is

required is that the system evolve only a general sparse coding strategy. Given appropriate input, a

learning algorithm would serve to produce the proper neural response properties and it would help

to tile the neurons in a way that allows the correct spacing as a function of the different parameters
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of selectivity (e.g., position, scale, orientation). Although there is little evidence of such a learning

algorithm in insects and animals with relatively simple brains, the evolution of a sparse learning

algorithm may be widespread in larger brains. However, the argument is not that the system must

necessarily learn from the natural world. Rather, one intriguing possibility is that the system learns

from the patterned structure of the spontaneous activity in the developing organism (e.g., Wong,

1999).

 It is not yet clear whether the patterns of spontaneous activity is sufficient for generating the

receptive field properties found in the newborn. However, such an approach would provide a

relatively simple means for producing a large number neurons with efficient tuning. The learning

algorithm also has the advantage that it can accommodate a large variation in cell number. If any

evolutionary mutation or developmental change results in a larger (or smaller) brain, the learning

algorithm should be capable of adapting to the system and adjusting the tiling appropriately.

Could all neurons in higher areas from V1 to IT simply be exhibiting sparse coding as a means

of efficiently representing the natural world? This may be possible. A number of investigators are

exploring ways to extend these ideas of efficient coding to higher levels. It is clear that these more

complex representations require a form of nonlinear coding that makes the tests of efficiency

considerably more difficult, though attempts to model nonlinear behavior of neurons with such

efficient coding approaches have met with some success (e.g., Wiskott and Sejnowsi, 2002; Schwartz

and Simoncelli, 1997).

However, there is a penalty that applies to learning if the system is too sparse. An extremely

sparse code (one in which neurons are highly selective for specific objects in specific poses, lighting

etc.) would have neurons that fired quite rarely. In order to effectively learn about the world, any

system must keep track of the relative probability of co-occurrences. No matter how a neural system

keeps track of these co-occurrences, if they occur too rarely it would be impossible to determine
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whether any feature is statistically related to any other feature. We cannot learn about how “faces”

behave in particular situations, if we have a neuron for every unique face. It is important the system

be invariant at some level so that we can collapse across instances of the category. Most

presentations of objects or events will occur just once or not at all during development if the object

is defined too precisely.

 From the perspective of learning, then, a code that is too sparse becomes intractable even if

there were enough neurons to accommodate it. Consequently, a system must also build invariance

into the code in order to develop and function efficiently. With high-level objects like faces, this

learning constraint would require that the face-selective neurons be invariant to dimensions along

which the face varies in different settings (lighting, pose, size, etc.). Thus, both invariance and

selectivity are necessary for achieving an efficient, sparse representation of sparse natural input.

Indeed, this invariance is a known property of visual neurons. As neurons are found to be more

selective, we find greater degrees of invariance. The complex cells in V1, show selectively to scale

(spatial frequency), and orientation, and they show small amounts of invariance to position. Higher

level neurons in IT and medial temporal cortex may show much higher selectivity to faces, hands,

etc. However, they also show much greater invariance to lighting, pose, and size (Rolls, 2000). In

one study of human medial temporal cortex (Quiroga et al., 2005), neurons were found that were

selective to particular actresses (Jennifer Aniston) while invariant to pose, lighting and position in

the image.

We therefore argue that although the evolution of large brains may allow a larger number of

highly selective neurons, the constraints of learning require that the selectivity go hand in hand with

a greater degree of invariance. Although there have been a number of proposals regarding how

invariance is achieved in the mammalian systems (Olshausen et al., 1993), no firm answer has

emerged.  We know that some of the simpler visual systems, such as those of Drosophila, do not
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show such invariance (Dill, Wolf, and Heisenberg, 1993). However, it remains unclear how such

invariance has evolved, and what we might expect from systems that show only partial invariance.

6.03.4.2 Metabolic Constraints

We conclude our discussion by returning to the issue of metabolic constraints. Could we argue

that primary evolutionary pressure driving towards sparse coding is one related to the metabolic

costs of neural firing? As noted earlier, both Attwell and Laughlin (2001) and Lennie (2003) argue

that there are not enough resources to achieve anything but a low-activity system. Moreover, when

we find sparse activity in frontal cortex (Abeles et al., 1990), it is more difficult to argue that the

sparse activity must arise because it is mapping the sparse structure of the world. Even at early

levels, if sparseness were metabolically desirable, there are a number of ways of achieving sparseness

without matching the structure of the world. Any one of a wide variety of positively accelerating

nonlinearities would do. Simply giving the neurons a very high threshold would achieve a sparse

code, but the system would lose information. We argue that the form of sparse coding found in

sensory systems is useful because such codes maintain the information in the environment, but do

so more efficiently. We argue that the evolutionary pressure to move the system towards a sparse

code comes from the representational power of sparse codes.

However, we do accept that metabolic constraints are quite important. It has been demonstrated

that at the earliest levels of the visual system, ganglion cells (Berry, Warland and Meister, 1997) and

lateral geniculate nucleus cells (Reinagel and Reid, 2000) show sparse (non-Gaussian) responses to

temporal noise. A linear code, no matter how efficiently it was designed would not show such sparse

activity, so we must assume that the sparseness is at least in part due to the nonlinearities in the

system and not due to the match between the receptive fields and the sparse structure of the input.
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As with the results show sparse responses in non-sensory areas, we must accept that metabolic may

also be playing a significant role.

6.03.5 CONCLUSIONS

We are therefore left with a bit of a puzzle. We know that higher levels of the visual system

show considerable sparseness: neurons fire at rates far below their maximal rate. However, we

cannot conclude that sparseness is only a result of an efficient mapping of the sparse structure of the

world. Metabolic efficiency must also be considered, independent of the statistical structure of the

world. In addressing the question of why a system is sparse, we must accept that widespread

sparseness in cortex is due to several factors. Many of us believe that the metabolic constraints are

secondary, however, and that artificial visual systems will someday incorporate much of the coding

we find in neural systems. The constraints of evolution, metabolism, anatomy and development all

play a role in determining why the nervous system is designed the way it is.  But one should not

presume that these constraints force the system towards some non-optimal solution. At present, the

evidence suggests that the nervous system has evolved a highly efficient learning algorithm for

discovering and representing the structure in the world. And the sparse responses of neurons are an

integral component of that efficient representation.
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Figure 1. Results of a neural network that searches for a sparse code using filters to describe 12x12
pixel image patches drawn from a collection of natural scenes (Olshausen and Field, 1996). The
collection of filters shown represent the 256 templates that the network found for describing each
patch. When any given natural scene patch is multiplied by this family of filters, one finds that most
of the responses are near zero and a small set of filters produce large responses (those matched to
the image structure). The templates have been shown to provide a good first-order account of the
responses of cortical V1 simple cells suggesting that such simple cells are optimized to provide a
sparse code for natural scenes. Adapted from Olshausen and Field, 1996.



20

Websites

Field Lab:   http://redwood.psych.cornell.edu/

Tolhurst Lab:   http://www.physiol.cam.ac.uk/staff/tolhurst/

Van Hateren Lab (natural scene stimuli collection):   http://hlab.phys.rug.nl/

Olshausen Lab:   http://redwood.ucdavis.edu/bruno/


