Contour Integration by the Human Visual System: Evidence for a Local “Association Field”

DAVID J. FIELD,* ANTHONY HAYES,† ROBERT F. HESS‡

Received 2 March 1992; in revised form 9 July 1992

The Gestalt law of “good continuation” has been used to describe a variety of phenomena demonstrating the importance of continuity in human perception. In this study, we consider how continuity may be represented by a visual system that filters spatial data using arrays of cells selective for orientation and spatial frequency. Many structures (e.g., fractal contours) show a form of redundancy which is well represented by the continuity of features as they vary across space and frequency. We suggest that it is possible to take advantage of the redundancy in continuous, but non-aligned features by associating the outputs of filters with similar tuning. Five experiments were performed, to determine the rules that govern the perception of continuity. Observers were presented with arrays of oriented, band-pass elements (Gabor patches) in which a subset of the elements was aligned along a “jagged” path. Using a forced-choice procedure, observers were found to be capable of identifying the path within a field of randomly-oriented elements even when the spacing between the elements was considerably larger than the size of any of the individual elements. Furthermore, when the elements were oriented at angles up to ±60° relative to one another, the path was reliably identified. Alignment of the elements along the path was found to play a large role in the ability to detect the path. Small variations in the alignment or aligning the elements orthogonally (i.e., “side-to-side” as opposed to “end-to-end”) significantly reduced the observer’s ability to detect the presence of a path. The results are discussed in terms of an “association field” which integrates information across neighboring filters tuned to similar orientations. We suggest that some of the processes involved in texture segregation may have a similar explanation.

Fractal Orientation Contours Visual coding Psychophysics Texture perception Spatial vision

INTRODUCTION

In the first half of the century, Gestalt psychologists developed a list of “laws” to account for many of the known phenomena of perceptual grouping (e.g., Wertheimer, 1938). Of these, the law of “good continuation” played a central role. The law has been invoked to account for the perception of continuity under a variety of conditions including a number of geometric illusions. Although the phenomena which are described by this law demonstrate an important organizing principle in human vision, the “law of good continuation” is little more than a description of these phenomena. As an explanation, the law has provided little predictive power.

In this study, we take a look at several parameters involved in the perception of continuity and we relate these findings to some current notions of early visual processing. Consider the image presented in Fig. 1. The image shows a tree partially blocked by a regular grid. The reader should find it easy to identify the continuity of the branches even though the grid obscures a significant portion of each branch. At some level, the visual system is able to integrate the information from the different component squares. In this paper, we investigate some of the rules behind this type of integration process.

Several recent papers have investigated the perception of continuity by looking at observers’ ability to segregate lines embedded in noise. For example, studies by Ussal (1975), Smits, Vos and Oefeleen (1985) and Beck, Rosenfeld and Ivy (1989) have investigated the detection of straight lines composed of dot elements surrounded by noise composed of similar dots. When the dots form a straight line, the row of dots segregates from the background (i.e., “pops out”). Factors such as the dot spacing and collinearity were found to play an important role in this segregation.

While the above studies restricted themselves to the detection of straight lines, it is clear that segregation of curved lines is also possible. Studies with Glass patterns (Glass, 1969), for example, demonstrate the effectiveness...
Smooth and jagged edges displayed at three spatial scales. (a) Presents a smooth edge (or alternatively a fractal edge with a low fractal dimension) and (b) presents a jagged edge (or alternatively a fractal edge—actually part of the Mandelbrot set—with a high fractal dimension). In the right panel of each figure the three tiers show, from top to bottom, the results of filtering each edge with bandpass filters of high, medium and low peak spatial frequencies. Notice that in (a) the position of the edge is aligned across the three scales. This is not the case for (b).

Smooth edges will show considerable agreement across neighboring frequency bands. Indeed, edge detection proposals like those of Marr and Hildreth (1980), Canny (1986) and Lowe (1988) take advantage of this agreement to identify which image structures represent meaningful edges. However, fractal edges do not show the same consistency across spatial scales. Although the edge is roughly continuous at each scale, the precise position and orientation of the edge changes from scale to scale. At any particular position, the edge may show a particular orientation in only one spatial-frequency band. Indeed, it has been suggested that the bandpass properties of the mammalian visual system provide an ideal mechanism for extracting this locally bandpass structure in natural scenes (Field, 1987, 1992; Hayes, 1989). Thus, the mammalian visual system may solve the
FIGURE 3. An example of a stimulus used in the experiments reported. The left-hand panel shows the path of elements (the stimulus) that the subjects must detect when embedded in an array of randomly oriented elements (the stimulus plus background shown on the right). In all experiments, the stimulus consisted of 12 elements aligned along a path. In this example each successive element differs in orientation by ±30 deg and for this difference in orientation the alignment of aligned elements is easily detected.
However, in Exp. IV, we look at the effect of distance by using separations of 0.25 and 0.9 deg.

4. An element was placed at the halfway point between P1 and P2 providing that the square was not already occupied by an element. If the path already contained element, then the path was extended (D/4) to a square that did not contain an element. In most of the experiments, the origin of the element was set to the orientation of the path ($\alpha = \omega$). However, in Exp. II the element orientation was orthogonal to the path orientation ($\alpha = 90$ deg).

5. At position P2, after a rotation by angle β or $-\beta$, another vector was projected a distance D to P3. In all conditions, the path rotation was one of two angles ($\pm \beta$). For example, in the 60 deg condition, the angle at point p was either +60 or -60; there was no possibility of a straight continuation of the path. In addition to the fixed rotation, a small random variation around β was also added (uniform distribution with a mean of 0.6 deg and a maximum of ± 10 deg). This small addition helped to prevent any geometrical patterns forming in the path.

6. Steps 4 and 5 were repeated until the path was completed.

For all the experiment described in this paper, the path was composed of 12 elements.

(i) Placing of background elements. After the path elements had been determined, the background elements were added to the image. An element was added to each square of the grid unless the square already contained an element. The orientation of the element (θ) was selected at random and its position within each square was randomly (uniformly) distributed. With 512 x 512 images and the square size set to 32 x 32, this resulted in a total of 256 elements in each image. Thus each trial consisted of a stimulus for the path (12 path elements + 244 background elements) and a stimulus containing only background elements (256 background elements).

Observers

Two of the authors served as observers in all experiments. Both were corrected myopes. Both observers were given sufficient practice (typically 100 trials) to reach asymptote in their performance for each experiment.

EXPERIMENT I—RELATIVE ORIENTATION OF PATH ELEMENTS

The first experiment investigates the relation between the relative orientation of successive elements along the path and the observer's ability to detect the path. Observers were presented images containing paths in which the orientation of successive elements differed by $\pm \beta$, where β was equal to 15, 30, 45, 60 or 75 deg. Figures 3 and 6 show examples of path orientations of 30 and 60 deg. As noted in the previous section, the relative orientation of successive elements differed by a constant angular difference ($\pm \beta$) rather than a range of angles between $+\beta$ and $-\beta$. Thus, there were no occurrences of two successive elements along the path having the same absolute orientation. In this first study, the five conditions were presented at stimulus durations of both 1.0 and 0.25 sec. The 0.25 sec condition was included in this experiment to determine the role that the stimulus duration played in the segregation process.

Results

The results of the first experiment are shown in Fig. 7. Proportion correct is plotted as a function of path orientation (β). Solid symbols show the results for the 1.0 sec duration and open symbols show the results for the 0.25 sec duration. Error bars provide the standard error of the mean of the four runs of fifty trials. The results show that with larger angles of relative element orientation, the task becomes increasingly difficult. With the 1.0 sec duration, the observers are still above chance out to 60 deg. The results suggest that under these experimental conditions, the path can be identified when the successive elements in the path differ by 60 deg or less. With the 0.25 sec duration, the subjects found the path more difficult to detect. Since the size of the stimulus was 8.0 deg and the beginning of the path was set at 1.0 deg from the center, the path was not guaranteed to fall in the fovea. With two or three fixations as allowed with the 1.0 sec duration, it was possible to identify the path under conditions where the path could not be identified in the 0.25 sec condition stimulus. Nonetheless, even with the 0.25 sec duration, the subjects could reliably detect the path even when the successive elements differed by ± 5 deg.

From these results, it is not possible to determine whether the ability to detect the path is a function of the alignment of these elements along the axis of the path or a function of the difference in orientation between successive elements in the path. Experiment II was designed to dissociate these two possibilities.

EXPERIMENT II—ELEMENTS ORTHOGONAL TO THE PATH

In Exp. I, the elements were placed end-to-end as shown in Figs 3 and 6. Consider the hypothesis that the ability to integrate these features is functionally related to the process involved in detecting a continuous but jagged edge. Under such an assumption, one might expect that the ability to detect the path with the end-to-end alignment would be significantly better than ability to detect the path when the elements are aligned side-to-side with respect to the orientation of the path.

A second hypothesis is that the process involved in integrating the path is simply related to the overall difference in orientation between successive elements in
the path. Under this second hypothesis, one would not expect to see a difference between the end-to-end vs the side-to-side alignment. In this experiment, we repeated the conditions of Exp I, with one important exception. The elements along the path were rotated by 90 deg, resulting in a path where the elements were aligned side-to-side. Since these elements were created using a circular Gaussian (equation 13), the rotation did not increase or decrease the distance between successive elements along the path. Furthermore, since the elements were separated by a distance that corresponds to eight times the standard deviation (32 pixels) of the Gaussian envelope, there was still no significant overlap between the elements.

An example of a stimulus used in this experiment is shown in Fig. 8. The difference in orientation between successive elements is the same as that of Fig. 3 (i.e. end-to-end alignment). The reader can verify for himself/herself that the path is considerably more difficult to detect in Fig. 8 than in Fig. 3.

Results

The results of Exp II are shown in Fig. 9. The data for both observers are plotted together with the results of Exp I (dotted lines). One can see that under these conditions, the ability to detect the path is significantly reduced when the relative orientation between successive elements differs by more than 30 deg. The results support the notion that the integration between elements is related to the continuity of edges or lines rather than a more general segregation process based on the redundancy of the stimulus or due to a general linking of features with similar orientation. Our results are in agreement with study of Beck et al. (1989) who measured the reaction time to detect a set of vertically oriented elements aligned in a straight line and embedded in a background of non-aligned vertical elements. Observers were found to be significantly slower at detecting the line when the elements making up the line were placed side-to-side as opposed to end-to-end.

Our results demonstrate that the alignment plays a significant role at all orientations and suggest that the process that mediates the integration of elements shows a strong bias towards the end-to-end alignment.

EXPERIMENT III—SELECTIVITY ALONG THE PATH

The results of Exp I suggest that it is possible to detect a path even when the elements differ in orientation by as much as 60 deg. This might appear to pose a dilemma. If this integration process can accommodate an angular difference of 60 deg, what makes the path unique among all the potential paths that are found in the randomly oriented background elements? Since the average angular difference between any two random elements is 90 deg, it would appear that there must be a large variety of potential paths available in the background elements.

However, in the experiments described above there is a unique link between the relative positions of the elements and their relative orientations. As shown in Fig. 5, the orientation of the elements is locked to the orientation of the path; a smooth curve passing through the long axis can be drawn between any two successive elements. Does the ability to integrate the elements of the path depend on this joint constraint of position and orientation?

To test this hypothesis, we conducted an experiment in which the orientation of the elements was varied relative to the orientation of the path. The path was constructed in the same way as Exp I. However, the orientation of each element along the path was then given a random change of ±15 or ±30 deg. An example of the stimuli used in Exp III is shown in Fig. 16.
CONTOUR INTEGRATION BY THE HUMAN VISUAL SYSTEM

Results
The results of this experiment are presented in Fig. 11. Results are shown for both observers using both the $a = \pm 15$ and ± 30 deg (solid lines) along with the results from Expt 1 where $a = 0$ deg (dotted lines). It is clear that this type of manipulation results in a substantial reduction in the ability to detect the path.

The results support the notion that there is a constraint between the relative positions and the orientations of the elements. The results suggest that the visual system can integrate large differences in orientation only when those differences lie along a smooth path. Consider, for example, the 15 deg randomization with the 0 deg path angle ($\alpha = 15$ and $\beta = 0$). The 15 deg randomization makes this task difficult, even though the observers have no difficulty tracking a 15 deg orientation difference when there is no variation ($\alpha = 0$ and $\beta = 15$).

We will return to this point in the Discussion.

EXPERIMENT IV—INTER-ELEMENT DISTANCE
In this experiment we investigate the effects of the spacing of the elements. If the process that mediates the detection of the path is a local process, one would expect some reduction in the ability to detect the path when the elements were spaced relatively far apart. In the two previous experiments, the distance between the elements averaged 0.5 deg (the stimulus array measured 8.0 x 0.0 deg across). In this experiment (IV), the segment length was set to either 0.25 or 0.9 deg (the largest distance possible with our equipment). The total number of elements in the stimulus remained constant (256) as well as the total number of elements in the path (12). Viewing distance and element size remained unchanged. Thus, the change in spacing resulted in stimuli of different sizes. In particular, element spacing of 0.25 deg resulted in a stimulus of 4.0 x 4.0 deg while a spacing of 0.9 deg resulted in a stimulus of 16.4 x 14.4 deg.

Figure 12 shows the 0.25 deg condition relative to the 0.5 deg condition.

Results
Figure 13 plots the results for each observer as a function of the segment length. Although the observers' performance decreases with distance, it is clear that they are capable of performing this task over a wide range of distances. At the largest inter-element distance (0.9 deg), the path segment is over 5.6 times the σ of the element (5.6 times the full-width at half-height). These results imply an interaction over relatively large areas of the visual field. Indeed, they provide further support for the notion that these effects are due to some form of interaction between mechanisms rather than to any single mechanism responding to successive portions of the path.

It should be noted that in this experiment, we have confounded the size of the display with the distance between the elements. Thus, the drop in performance at the large distances may be partly due to the fact that many of the elements of the display are now presented in the periphery. It is difficult to avoid this confound without confounding other factors. If the display size remained constant, then the number of elements would have to change under the different conditions. The results we obtained allow us to conclude that the integration is possible at large distances. However, further experiments would be required to determine whether the results were due solely to the distance between the elements.

EXPERIMENT V—RELATIVE PHASE OF PATH ELEMENTS
In the first four experiments, all the elements were of the same form: even-symmetric Gabor functions. The last experiment was run to determine whether the elements were required to have the same form to achieve path integration. The conditions of this experiment were
the same as that of Expt I, except the relative phase of the elements \(p \) in equation (11) was randomized (uniformly distributed between 0 and 2\(\pi \)). The randomization applied to all the path elements and the background elements. An example of one of the stimuli is shown in Fig. 14.

Results
The results of Expt V are plotted in Fig. 15 (solid lines) along with the results from Expt I. These results show no significant difference between this condition and the condition of Expt I. The results suggest that the relative phases of the components are not important to the joining of the segments. With the randomization procedure applied to the phase, the greatest possible difference in phase between two successive elements will be \(\pi + \pi = -\pi \) while the average difference will be \(\pi /2 \).

It is not possible to conclude that phase is irrelevant under all possible conditions. For example, it may be that phase will play a significant role when the bandwidth of the elements is broader than those used in this study. However, these results imply that the conditions of this experiment, the observers can segregate the path even when the relative phases of the path elements are random.

Discussion
The five experiments reported above provide us with a number of insights into the processes that mediate the segregation of a path of elements from its background. In each of these experiments, the elements in the path cannot be identified on the basis of the stimulus properties of the elements. These properties (e.g., spatial frequency, orientation, intensity, contrast, etc.) were the same for the elements in both the path and the background. The path is identified by the relative alignment of its constituent elements. We interpret these results as suggesting a localized linking process or association between the responses to the elements in the path according to a specific set of rules.

Experiments I and IV demonstrate that observers are able to segregate the path from the background when the elements in the path differ up to 60\(\degree \) in orientation and when they are separated by distances up to 7 times their width. Experiment II demonstrates that the ability to detect the path is significantly worse when the elements are placed side-to-side as opposed to end-to-end, confirming the finding of Beck et al. (1989). If this segregation is due to the association in responses, then the results suggest that the association between elements is stronger along the axis of the element than orthogonal to the axis.

Figure 16(a) provides one way to represent this proposed linking between the responses to each element. For a given element in our displays, there appears to be a region around the element where other elements group together and segregate from the background. We describe this region of association as an "association field". It would be difficult to provide the precise parameters describing the size of this field. The exact size will be dependent on the particular experimental conditions employed. For example, our results are based on stimuli which have 12 elements in the path and 256 total elements in the stimulus. Significant changes to these parameters are likely to change the proportion correct and would therefore change our estimates of the overall size of this association field. However, such changes should not affect the elongated shape of this field. However, these results are interpreted, it is clear that this "association field" covers a considerably wider area than would be covered by the receptive field of a mammalian cortical cell.

The results of Expt III suggest that this association field should not be thought of as a general spread of activation, linking together all types of features within the field. The results show that variations in the orientation of the elements relative to the orientation of the path, result in a significant drop in performance. This suggests that the different parts of the association field show considerable orientation selectivity. Figure 16
shows our proposal of the preferred orientation in different regions of the field. The rayes extending from the ends of the element represent the optimal orientation at different positions relative to the position of the element. As portrayed in Fig. 16(b), elements are associated according to joint constraints of position and orientation.

The results of Exp. V suggest that the linking process may be orientation selective but phase invariant. If this holds up under closer scrutiny, this would imply that a mechanism more analogous to a complex cell would be appropriate as the basis of linking. It must be emphasized, however, that this description in terms of an orientation-selective association field is not a necessary model of early visual processing. Although we discuss some interesting parallels in the next section, the association field may represent a grouping strategy at relatively high stages of visual processing. We expect to find correspondence at some level of the visual system, but the description above does not suggest where that correspondence lies.

The five experiments reported in this paper are not meant to represent an exhaustive list of the parameters important in defining the association field. Parameters such as the spatial frequency bandwidth, orientation bandwidth, size, color and relative depth may all have significant effects on the ability to segregate the path from the background. For example, the oriented elements making up the path may only group together when they share similar properties (i.e., color, depth). However, such experiments are beyond the scope of this paper.

Physiological speculations

As with most psychophysical studies, it would not be wise to make strong conclusions about the physiological mechanisms which underlie our results. However, there are some interesting parallels between our results and several known properties of the mammalian visual system. In this section, we discuss these parallels but emphasize the speculative nature of this discussion.

First, a comment about the single detector notion. We believe that the results of our study do not support the notion that the detection of the path is mediated by a cell with a receptive field that conforms to the layout of the path. The type of explanation may be conceivable for the case where the elements along the path differ by 0.5 deg. However, the explanation would have difficulty when the elements differed by more 15 deg. Since there are 12 elements in each path and the orientation difference is always ± 8, the number of potential paths from each starting point in each condition is 2^12 or 4096. The notion that there might exist 4096 "path detectors" at each location conforming to the range of possible paths seems quite unlikely. Furthermore, it is even unlikely that successive elements along the path are detected by the same mechanism. The bandpass nature of the elements as well as the relative orientation and distance between successive elements should preclude a cell with a classically defined receptive field from responding to successive elements.

If our results are assumed to be a consequence of local interactions between cortical cells, then one must accept that the interactions are occurring at relatively large distances; larger than that represented by a single orientation column. Experiment IV shows interactions at a distance of 0.9 deg for stimuli with a width of 0.125 deg. Near the fovea of the monkey, an orientation column cycles with a periodicity of approx. 1 mm (a hypercolumn) which corresponds to the fovea to a distance of approx. 0.3 deg (Hubel & Weisel, 1974a, b). To account for our results on the basis of interactions between cells in primary visual cortex, interactions between cells in neighboring columns—not just neighboring cells—would be required.

It is known that there exist lateral (inter-columnar) connections in primary visual cortex (Rocksland & Lund, 1983; McGraw, Gilbert, Rivlin & Weisel, 1991) and there is both anatomical and physiological evidence that
cells having similar orientation preference are interconnected (Trn & Gilbert, 1988; Gilbert & Wiesel, 1989). However, the results of Expts I, II, and III suggest that the process that underlies this segregation shows a specific relation between position and orientation. Similar orientations are grouped together only when the alignment falls along particular axes. At the present time there is no evidence that these lateral cortical connections follow these constraints.

Recently, several studies have found evidence for another long-range orientation specific interaction in the visual cortex (e.g. Gray & Singer, 1989; Engel, Konig & Singer, 1991). These studies suggest that there exist coherent oscillations in the activity of neighboring neurons in the visual cortex. The timing between successive action potentials of many cortical cells do not occur at random following the presentation of a stimulus (e.g. moving a bar across the receptive field). For many cells, the probability of response varies cyclically at a frequency of around 50 Hz. The oscillations have been found to be coherent (phase-linked) between cells in neighboring orientation columns (non-overlapping receptive fields) when the orientation tuning of the two cells was similar (Gray & Singer, 1989). Eckhorn, Baur, Jordan, Brosch, Kruse, Munk and Reitboeck (1988) and Engel et al. (1991) have suggested that these oscillations represent a method of linking features in the visual cortex. Further work would be required to determine whether such oscillations play a significant role in the segregation process described in this paper. However, if the coherence in the oscillations was found to conform to the properties of this psychophysically defined association field, a stronger case could be made.

Computational models of curve extraction

The model that we propose in this paper shows some similarities to the models proposed in the computational literature on curve extraction. A number of studies have suggested an important role for the representation of curvature at quite early stages of the visual system (e.g. Attenez, 1954; Blakemore & Over, 1974; Koenderink & Richards, 1988; Watt & Andrews, 1982; Wilson & Richards, 1989). Kellman and Shipley (1991) have also proposed a set of rules similar to the association field to account for the perceptual completion of occluded edges in complex objects and images with illusory contours.

Purpura and Zucker (1989) as well as Sha'ashua and Ullmas (1988) have proposed algorithms for extracting curves which link orientation-selective elements. Our results provide support for the notion that the human visual system utilizes a local grouping process similar to the algorithms suggested by these authors. However, one of the difficulties with their algorithms as a model for human vision is that curves are extracted using a time consuming iterative process based on a relaxation method. As Giguere and Malik (1991) have recently noted, such iterative algorithms are not biologically plausible, requiring multiple feedback loops to extract a curve. Giguere and Malik have shown that it is possible to implement a completely parallel feed-forward algorithm for curve extraction, which shows properties similar to our proposed association field and is both biologically plausible and computationally efficient.

A second feature of these computational algorithms is that they are implicitly designed for smooth curves that have well defined tangents. For smooth curves, as shown in Fig. 2(a), the tangent of the edge is relatively constant at different scales. This redundancy across scale can help to define the curve. Although smooth curves are common in a structured (man-made) environment, it should not be assumed that the mammalian visual system is specially adapted to handle such curves.

Fractal curves like the one shown in Fig. 2(b) do not have a well defined tangent. Rather, the orientation of the edge will depend on the particular scale under consideration. As one moves from one spatial frequency band to the next, the orientation of the filtered edge will smoothly change. Indeed, the edge may be continuous at each scale even though the local orientation of the edge changes from scale to scale.

Fractals provide a useful means of creating and representing visual features that have structure at a variety of spatial scales (e.g. Mandelbrot, 1982). In
FIGURE 17 This texture contains elements in which the immediate neighbor on all sides differ in orientation by 15°. If a perceptual texture was defined only by the feature contrast at the border, then one would not expect to see any grouping in this image. However, the reader will probably notice that the elements that are aligned group together producing a percept of elements flowing smoothly down the image.

(Wertheimer, 1938), as well as studies by Beck (e.g., 1966, 1983) and Julesz (see Julesz & Shumer, 1981 for review), have shown that one structure will segregate from another when the textures differ by an appropriate set of parameters. The identification and classification of these parameters has been the subject of many recent psycho-physical studies (e.g., Bovik et al., 1990; Graham et al., 1993; Sussman, Beck & Graham, 1989; see Bergen, 1991 for review). Much of this work has focused on the global nature of the segregation. In these studies, the segregation process is presumed to result from a process involving spatially-parallel filters which are selective along a number of dimensions. Textures that differ in orientation or spatial frequency contrast, for example, are readily segregated.

In our stimuli, there does not exist any "global" feature that allows the path to be segregated from the background. It is not possible to segregate the path by filtering along any particular dimension. Our results imply that the path segregation is based on local processes which group features locally. We believe that the recent demonstrations of Nothdurft (1985, 1991) suggest that a similar local process may be involved in many texture segregation tasks. Nothdurft demonstrates that when the orientation of small line elements shift slowly across an image, these elements group together and segregate from the background. His results demonstrate that the global feature-based model is insufficient.

However, Nothdurft proposes that the segregation of textures is dependent on the "feature contrast" at the borders of the texture—not the local grouping of structures within the texture. Landy and Bergen (1991) make a similar argument using textures which do not consist of localized elements. Their textures were created by selectively filtering different regions of a noise pattern. They found that the continuity at the border between two textures was important in the ability to segregate the textures.

Consider the image show in Fig. 17. In this image, all elements differ in orientation from their four neighbors.