
Method for estimating the relative contribution
of phase and power spectra to the total
information in natural-scene patches

David J. Field1,* and Damon M. Chandler2

1Department of Psychology, Cornell University, Ithaca, New York 14853, USA
2School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA

*Corresponding author: djf3@cornell.edu

Received June 10, 2011; revised September 11, 2011; accepted October 22, 2011;
posted October 24, 2011 (Doc. ID 149099); published December 7, 2011

A wide variety of recent studies have argued that the human visual system provides an efficient means of proces-
sing the information in the natural environment. However, the amount of information (entropy) in the signal can be
estimated in a number of ways, and it is has been unclear how much of the information is carried by the different
sources of redundancy. The primary difficulty is that there has been no rational way to estimate the entropy of such
complex scenes. In this paper, we provide a technique that uses a recent approach to estimating the entropy and
dimensionality of natural scenes [D. M. Chandler and D. J. Field, J. Opt. Soc. Am. A 24, 922–941 (2007)] to estimate
the amount of information attributable to the power and phase spectra in natural-scene patches. By comparing the
entropies of patches that have swapped phase spectra and fixed phase spectra, we demonstrate how to estimate
both the amount of information in each type of spectrum and the amount of information that is shared by these
spectra (mutual information). We applied this technique to small patches (4 × 4 and 8 × 8). From our estimates, we
show that the power spectrum of 8 × 8 patches carries approximately 54% of the total information, the phase
spectrum carries 56%, and 10% is mutual information (54%þ 56% − 10% ¼ 100%). This technique is currently
limited to relatively small image patches, due to the number of patches currently in our collection (on the order of
106). However, the technique can, in theory, be extended to larger images. Evenwith these relatively small patches,
we discuss how these results can provide important insights into both compression techniques and efficient cod-
ing techniques that work with relatively small image patches (e.g., JPEG, sparse coding, independent components
analysis). © 2011 Optical Society of America

OCIS codes: 330.4060, 330.1880, 330.1800, 330.5510, 330.5020.

1. INTRODUCTION
In the last three decades, we have gained considerable in-
sights into the properties of visual systems by considering
the statistics of natural scenes (e.g., [1–6]). These approaches
have demonstrated that many basic properties of the early vi-
sual system (both selectivity and tiling of visual neurons) con-
tribute to make this neural representation an efficient code of
the natural environment. Neural networks that minimize the
dependencies between neurons using sparse coding or inde-
pendent components analysis (ICA) produce neurons with ba-
sic linear properties quite similar to those of V1 neurons [4,7].
However, linear independent codes (i.e., factorial codes) can-
not exist because the images of our environments are not a
simple sum of independent functions. For natural scenes, it
is quite likely that no code would be capable of removing
all of the statistical dependencies.

One could argue that a goal of later stages of the visual sys-
tem is to remove the statistical dependencies that remain after
this early coding by V1. Indeed, efforts to model the temporal
and neighborhood properties using efficient codes have pro-
vided more accurate accounts of V1 neurons (e.g., [8–11]).
However, the full set of dependencies between pixels or neu-
rons remains unknown. Some efforts have been made to cap-
ture the full statistical structure of high contrast 3 × 3 image
patches [12]. The work provides an elegant and detailed study

of this nine-dimensional state space. However, such results
also point out the complexity of even these small patches.

Knowing the true information of a data set would provide
an idea of just how compressible the data set is. Although
lossy compression techniques like JPEG [13] and JPEG-
2000 [14] have proven to be popular and successful strategies,
there remains the question of the lower bound for lossless
compression. Recently, we have described a method of esti-
mating the true redundancy of a signal [15]. For images that
are larger than 4 × 4, the method does involve some assump-
tions regarding how one might optimally extrapolate the avail-
able data. However, the technique is straightforward and
involves relatively simple calculations and extrapolations of
known data. Hosseini et al. [16] more recently described a
technique for estimating the redundancy of natural scenes
based on a measure of the mutual information between a pixel
and its causal neighborhood of increasing size. Both the tech-
nique of Hosseini et al. [16] and our technique in [15] yielded
an entropy rate of approximately 3:0 bits=pixel for natural
scenes.

In this paper, we use our technique to investigate another
important aspect of natural scenes: how much information is
carried in the power spectrum versus the phase spectrum
and how much information is common to both spectra
(mutual information).
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A. Importance of Power versus Phase for Visual
Perception and Coding
It has been previously noted that the power spectrum of nat-
ural scenes falls with frequency f as approximately 1=f 2α (am-
plitude spectrum by 1=f α) [1,17]. Estimates of the parameter α
for any given population typically vary from 0.7 to 1.5 with
averages in the range of approximately 1.1 [2,18]. Such results
imply that there exist factors that keep the images from true
scale invariance (e.g., the limited depth of field of the camera,
object motion, or choice of images). It has long been argued
that the phase spectrum carries most of the information re-
garding an image (e.g., [19–21]). Exchanging the phase and
power spectra of two natural scenes will typically result in
images that appear much closer to the image with the correct
phase spectrum [20,21]. However, this does not necessarily
imply anything significant about visual processing (e.g., that
we are more sensitive to the phase spectrum). If natural
images have similar power spectra, then it would not be sur-
prising that exchanging the power spectra has little effect on
the perceived images. Rather, this would simply suggest that
the power spectrum contained little information. As expected,
Millane and Hsiao [21] demonstrated that for 512 × 512
images, the RMS difference between images is much larger
when the phase spectra are swapped relative to when the am-
plitude spectra are swapped.

Morgan et al. [22] argued that for small image patches, the
perceived image structure is well described by the power
spectra. For larger image patches, the phase spectrum dom-
inates. We will support this point in this paper and argue that
this property is due to the sparse structure of images and the
nature of the information in small patches. Specifically, most
small image patches (e.g., 8 × 8 pixels) contain blank regions,
single edges, or bits of texture. The power spectra for these
small patches can be quite informative regarding which of
these classes is present. For example, if a single edge is pres-
ent, the power spectrum will provide information regarding
the orientation of the edge. However, as the images become
significantly larger, the images will typically contain a signifi-
cant number of edges as well as textures and blank regions.
For these larger patches, the phase spectrum is determined
by the relative combination and positions of these features.
With edges at a wide range of scales, the power spectrum con-
verges toward the characteristic ≈1=f 2 power spectrum. In-
deed, it has been argued that the 1=f 2 power spectrum is
produced from a self-similar sum of local features [3,23,24].

As noted above, natural scenes show a consistent falloff in
their power spectra. Even art, both landscape and abstract,
shows this characteristic 1=f 2 falloff (e.g., [25]). However, this
consistency in the spectra should not lead one to conclude
that the power spectrum contains no information. Certainly,
if all spectra were truly identical, no information would be
provided. However, both the rotationally averaged spectra
[1–3,18] and the full two-dimensional spectra of natural scenes
show significant variation from image to image (e.g., [26,27]).
Furthermore, Torralba and Oliva [26] demonstrated that dif-
ferent image classes (photographs of street scenes, vistas, in-
door scenes, etc.) have significantly different power spectra,
and this difference allows for a significant degree of classifi-
cation. Their results do not necessarily imply that the power
spectrum is explicitly used when human observers classify
images. It is possible that the variations in the power spectrum

are highly correlated with the variations in the phase spec-
trum. In such a case, the power spectrum would provide little
or no additional information to that found in the phase spec-
trum. This idea is further supported by the result that rando-
mizing the phase spectrum of an image typically loses its
identity, but fixing the power spectrum to a constant slope
typically produces only relatively minor distortions.

It should also be noted that the power spectrum provides an
alternative description of the pairwise correlations in an im-
age (the power spectrum is the Fourier transform of the auto-
correlation function). Therefore, techniques that rely on only
the correlations (e.g., linear Hebbian learning) will make use
of the statistics found only in the power spectrum. In contrast,
techniques such as sparse coding and ICA (e.g., [4,7]) are de-
pendent on the higher-order structure found in the phase
spectrum. For these methods, the power spectrum is whi-
tened to remove the pairwise correlations in the image.

In summary, the power spectrum of natural scenes is not
identical from image to image. The spectrum contains infor-
mation, and it has been demonstrated that this information is
correlated with different image classes (e.g., [26]). However,
the specific amount of information (entropy) that is attributa-
ble to the power and phase spectra of natural scenes, and the
amount of information that is common to both spectra (mu-
tual information), has yet to be reported. In this paper, we
make an estimate of these entropies for patches of natural
scenes.

Determining these entropies can provide insight into the re-
lative effectiveness of one neural coding strategy versus an-
other. For example, if most of the information in an image
patch is due to the phase spectrum, then techniques that rely
only on the power spectrum (such as linear Hebbian learning)
would be expected to provide a less efficient code compared
to strategies (such as ICA and sparse coding) that operate lar-
gely on the phase spectrum, and vice versa. On the other hand,
if there is a large amount of mutual information between the
power and phase spectra, then both types of coding strategies
could, in theory, be equally effective, since knowledge of
the power (or phase) spectrum also provides knowledge
of the phase (or power) spectrum. Similar insights may
also be gained regarding the performance of various image-
processing and computer-vision algorithms. Determining
these entropies may help explain why algorithms that utilize
only the power spectrum or only the phase spectrum can still
be successful at tasks that seemingly require the other type of
spectrum.

B. How Much Information Is Attributable to Power
versus Phase, and How Much Information
Is Common to Both Spectra?
In this paper, we investigate the amount of information
attributable to the power spectrum, the amount of information
attributable to the phase spectrum, and the amount of infor-
mation that is common to these spectra (mutual information).
To this end, we apply the entropy estimator from [15] to com-
pare the entropy of natural-scene patches to the entropies of
patches created via two strategic manipulations of the phase
spectra.

Fixed-phase manipulation: To investigate the amount of
information attributable to the power spectrum, we create
“fixed-phase” natural-scene patches in which the phase
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spectra of all patches have been set to a single common phase
spectrum. Here, because all patches have the same phase
spectrum, there is no variability in (and thus no information
attributable to) the phase spectrum. As a result, the entropy of
these patches will reveal the amount of information in natural-
scene patches attributable to the power spectrum.

Hybrid manipulation: To investigate the amount of infor-
mation attributable to the phase spectrum and the amount of
mutual information, we create “hybrid” natural-scene patches
in which the phase spectrum of each patch has been replaced
with the phase spectrum of another natural-scene patch se-
lected at random. Here, each patch maintains its original
power spectrum, but its phase spectrum now corresponds
to that of another, randomly selected natural-scene patch.
This manipulation removes any statistical dependence that
might exist between the power and phase spectra. As a result,
the entropy of these hybrid patches will reveal the total infor-
mation that would exist if there were no mutual information
between power and phase. The amount of information attri-
butable to the phase spectrum can then be computed by com-
paring the entropy of the hybrid patches to the entropy of the
fixed-phase patches. In addition, the amount of mutual infor-
mation can be computed by comparing the entropy of the
hybrid patches to the entropy of the original natural-scene
patches.

The investigation we describe here uses relatively small
patches (4 × 4 and 8 × 8 pixels). However, the technique em-
ployed can in theory be extended to larger images if the po-
pulation of test images is sufficiently large. We believe our
method provides a new approach to determining the relative
contribution of different sources of information in an image—
as well as showing the mutual information between those
sources.

We also believe that the results for small patches is inher-
ently interesting for two reasons: First, the method allows the
investigation of local scene properties. Many forms of com-
pression (e.g., JPEG [13]) and efficient neural coding strate-
gies (e.g., ICA [7] and sparse coding [4]) are typically
applied to relatively small patches. We believe our approach
can provide insights into the different forms of information
used by these efficient coding techniques. Second, by using
smaller patches, our image population can be relatively large
(e.g., 106 patches, whereas most databases contain at most 103

full-sized images). This large number allows a more accurate
test of the methods described in this paper.

2. THEORY AND METHODS
This section describes an overview of the theory and experi-
mental methods used to investigate the relative contributions
of amplitude and phase information in natural-scene patches.
First, we review the entropy estimator described in [15]
(Sections 2.A and 2.B). Next, we describe how this technique
can be used to estimate the information content in the power
spectrum and phase spectrum and the amount of information
shared between these spectra (mutual information) (Sec-
tion 2.C). Finally, we provide details of the specific stimuli and
procedures employed (Sections 2.D and 2.E, respectively).

A. Proximity Distributions
The technique we use for estimating information is based on
the extrapolation of proximity distributions. As described in

[15], proximity distributions can be used to estimate both
the entropy and the dimensionality of an image set.

To measure the proximity distribution for a given set of
image patches, the patches are first randomly divided into
two groups:

• Group T , which consists of patches that serve as the
to-be-matched “target” patches.

• Group N , which consists of patches that serve as the
target’s potential matches.

For each target patch in Group T , an exhaustive search is
performed to find the patch in Group N whose pixel values
are closest in Euclidean distance to the pixel values of the tar-
get patch (the so-called “nearest neighbor” to the target
patch). The proximity distribution is the average log near-
est-neighbor distance computed as a function of the number
of patches in Group N (the average is taken over all target
patches).

Specifically, let T and N denote the number of patches in
Groups T and N , respectively. Let XðT tÞ, t ∈ ½1; T �, denote the
tth target patch, and let XðN nÞ, n ∈ ½1; N �, denote the nth patch
in Group N . The Euclidean distance, Dn;t, between the pixel
values of XðT tÞ and the pixel values of XðN nÞ is given by

Dn;t ¼ ∥XðT tÞ − XðN nÞ∥L2
¼

�Xk
i¼1

ðX ðT tÞ
i − X ðN nÞ

i Þ2
�

1=2
; ð1Þ

where Xi denotes the ith pixel of X and k denotes the total
number of pixels (e.g., k ¼ 64 for an 8 × 8 patch).

For each target patch XðT tÞ, we perform an exhaustive
search for the minimum Euclidean distance between XðT tÞ

and each of the N patches in Group N . This nearest-neighbor
distance, denoted by D�

N;t, is given by

D�
N;t ¼ min

n∈½1;N �
fDn;tg: ð2Þ

Equation (2) is computed for each target patch, XðT tÞ,
t ∈ ½1; T �, resulting in a collection containing T values of D�

N;t.
Finally, the average log nearest-neighbor distance, denoted

by Eflog2 D�
Ng, is estimated via the sample mean of the collec-

tion of log2 D�
N;t values:

Eflog2 D�
Ng ≈

1
T

XT
t¼1

log2 D�
N;t: ð3Þ

The proximity distribution is Eflog2 D�
Ng computed as a

function of N . In particular, a plot of Eflog2 D�
Ng versus N

can reveal how the average log nearest-neighbor distance
changes as more patches are added to Group N . This evolu-
tion of Eflog2 D�

Ng as a function of N has been shown to be an
effective tool for estimating the entropy and dimensionality of
a relatively high-dimensional data set given a relatively small
number of samples from that data set [15,28–31].

Figure 1 shows proximity distributions for 8 × 8 patches of
Gaussian white noise, noise with an amplitude spectrum of
1=f , and natural scenes from the van Hateren database
[32]. The horizontal axis denotes N (the number of patches
in Group N ). The vertical axis denotes the corresponding
Eflog2 D�

Ng. As N increases, the chance of finding a good
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match (small Euclidean distance) to a given target patch im-
proves, i.e., the Euclidean distance between the patches de-
creases. This general feature is not surprising; however,
both the rate at which this function decreases and the asymp-
tote allow us to estimate the dimensionality and entropy of
this image population. In particular, the dimensionality of
the image population is simply the negative inverse of the
slope of the proximity distribution, and the Shannon informa-
tion (entropy) is a function of the asymptote [15]; see also
Appendix A.

Figure 1 also shows the proximity distribution for Gaussian
white noise and for noise with a 1=f amplitude spectrum (1=f 2

power spectrum). The steeper proximity functions and lower
asymptotes for the natural scenes relative to the noise are due
to the relative redundancy of these three image classes. For
data sets that are more redundant, one is more likely to find a
patch that is closer to the target patch. The white noise popu-
lation has the highest entropy (lowest redundancy) of any po-
pulation—and the proximity distribution falls at the slowest
possible rate. In [15], we demonstrated that the entropy of
a population of images can be estimated from this distribution;
an overview of this process is described in the following
section.

B. Estimating Entropy and Dimensionality from the
Proximity Distributions
Natural scenes are fundamentally noise-limited. Photon noise,
sensor noise, and the noise from digital quantization limit
the accuracy of any nearest-neighbor match. This noise limit
forces each proximity distribution to converge on the slope
for noise. For any class of k-pixel images X ¼ ½X1;
X2;…; Xk� (e.g., 4 × 4 images with k ¼ 16), the slope asymp-
totes at −1=k (e.g., −1=16). When the slope converges on this
noise limit, the height of the proximity distribution curve de-
termines the entropy of the image class. That is, for 64-pixel
images (8 × 8), both curves will converge on a slope of −1=64.
A 9-pixel image (3 × 3) will converge on a slope of −1=9.

The relative dimensionality (−1=slope) at different values of
N may seem surprising. For example, as shown in Fig. 1, the

white noise slope is not a slope of −1=64 when N is small.
It converges on a slope of −1=64 when N is sufficiently large,
but it does not begin with that slope. One property of a high-
dimensional sphere is that most of the volume is found in the
regions near the edge of the sphere. The higher the dimension-
ality of the sphere, the higher the proportion of the data t
hat will be found near the edge. Therefore, when a high-
dimensional sphere is sampled with a small number of sam-
ples, the sphere appears lower-dimensional. Only after a
sufficient number of samples do we see the true dimension-
ality. In line with this, the proximity curve begins with a
steeper curve but eventually converges on a slope that corre-
sponds to the dimensionality.

When the slope of the proximity distribution has con-
verged, the (differential) entropy, h, can be approximated by

h ≈ −kEflog2 D�
Ng þ log2

�
AkN
k

�
þ γ
ln 2

; ð4Þ

where γ is the Euler constant and Ak ¼ kπk=2=Γðk2 þ 1Þ denotes
the surface area of a k-dimensional hypersphere (see
Appendix A and [29]).

This technique allows an estimate of the entropy of a data
set using significantly fewer data samples than that required
for a direct calculation. For a direct calculation, we would
need to calculate the probability of every possible combina-
tion of pixels. Unfortunately, the total number of possible
combinations increases exponentially with the image size,
and it also depends on the possible shades of gray; thus, a di-
rect calculation would require a prohibitively large number of
samples, even for very small image patches. In general, for
images containing P × P pixels and G shades of gray, the total
number of possible combinations (possible patterns in the P ×
P array) is 2P×P×log2 G. For a 3 × 3 image with 256 shades of
gray, the number of possible combinations is 23×3×8 ¼ 272 ¼
4; 722; 366; 482; 869; 645; 213; 696 possible combinations of
pixels. Even if it were possible to acquire and store this many
patches, one would still needmultiple instances of each com-
bination of pixels in order to properly estimate the probability
of each combination. In comparison, Eq. (4) provides an es-
timate of the entropy with just 217 ¼ 131; 072 samples [15].
Note that we are in no way implying that the visual system
operates using this particular digital representation of grays-
cale values; rather, the value of G ¼ 256 is used here only to
exemplify the prohibitive number of patches required for a
direct calculation of entropy.

Whereas for images up to approximately 3 × 3, the slope of
the proximity distribution converges on the noise slope when
N reachesN ≈ 217, for larger images, the slope has not yet con-
verged, even with an N of several million samples. This fact
requires us to extrapolate the curve to provide an estimate of
the entropy. In [15], we provided three different approaches to
extrapolating the proximity distribution functions. To empha-
size that this approach uses extrapolations, the term XEntro-

py was introduced. Our best estimate used something we
called XEntropyC. Our estimate for the entropy rate of the 8 ×
8 image patch population in [15] was 2:9 bits per pixel; i.e., we
argued that the best compression rate that could be achieved
with this image population is 2:9 bits per pixel. A very similar
estimate of approximately 3:0 bits=pixel was reported by
Hosseini et al. [16] using a very different method of estimating
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Fig. 1. Proximity distribution functions for 8 × 8 patches of Gaussian
white noise, noise with an amplitude spectrum of 1=f , and natural
scenes. The horizontal axis denotes N (the number of patches in
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entropy based on the mutual information between a pixel and
its causal neighborhood of increasing size.

In this paper, we will again use XEntropy C to estimate the
relative entropy of data sets. Here, we will not focus on the
absolute entropy, but the difference in entropy between nat-
ural-scene patches containing strategic manipulations of their
phase spectra. Even if our extrapolated entropy significantly
underestimates or overestimates the entropy, as long as the
error is in a consistent direction, this relative entropy
still holds.

C. Estimating the Entropies of Amplitude and Phase
Spectra
We seek the amount of information attributable to the ampli-
tude (power) spectrum and the phase spectrum and the
amount of mutual information that is common to these
spectra. To this end, patches from three types of images were
employed:

1. Natural-scene patches obtained from the van Hateren
database [32].

2. Manipulated natural-scenes patches in which the phase
spectra of all patches have been set to the same common
phase spectrum.

3. Manipulated natural-scene patches in which the phase
spectrum of each patch has been replaced with the phase
spectrum of another natural-scene patch selected at random.

The first image class is an extended version of the data used
in [15]. The second image class allows us to determine the
amount of information in the amplitude spectrum since, by
forcing all patches to have the same phase spectrum, there
is no information in the phase spectra for these images.
The third class allows us to determine the total information
that these image classes would have if there were no mutual
information between the amplitude and phase spectra; swap-
ping the phase spectrum of each patch with the phase spec-
trum of a randomly selected natural-scene patch removes any
dependence between the amplitude and phase spectra. By
comparing the results of this latter class of image to the ori-
ginal images, we can determine the amount of mutual infor-
mation in the phase and power spectra.

Specifically, let HðAÞ denote the entropy of natural scenes
attributable to the amplitude spectrum. Let HðPÞ denote the
entropy of natural scenes attributable to the phase spectrum.
Let HðA; PÞ denote the entropy of natural scenes (the joint
entropy of A and P).

If the amplitude and phase spectra are statistically indepen-
dent, then

HðA; PÞ ¼ HðAÞ þHðPÞ: ð5Þ

However, if there exists a statistical dependency between the
amplitude and phase spectra, then HðA; PÞ ≤ HðAÞ þHðPÞ;
specifically,

HðA; PÞ ¼ HðAÞ þHðPÞ − IðA;PÞ; ð6Þ

where IðA;PÞ ≥ 0 denotes the mutual information between A
and P. Note that IðA;PÞ ¼ 0 only if A and P are independent.

The contributions of HðAÞ and HðPÞ to the joint entropy
HðA; PÞ are shown graphically in Fig. 2. If the amplitude

and phase spectra are independent of each other [see
Fig. 2(a)], the total entropy HðA; PÞ is simply the sum of
the entropy due to the amplitude spectrum HðAÞ and the en-
tropy due to the phase spectrumHðPÞ. On the other hand, if A
and P are statistically dependent and therefore possess some
amount of mutual information IðA;PÞ [see Fig. 2(b)], then the
total entropy HðA; PÞ is determined by HðAÞ, HðPÞ, and the
amount of overlap IðA;PÞ.

We seek estimates of HðAÞ, HðPÞ, and IðA;PÞ. To this end,
we compare the entropy of patches from natural scenes
HðA; PÞ with the entropies of patches from scenes whose
phase spectra have been strategically manipulated. Specifi-
cally, we created two conditions: (1) fixed-phase natural
scenes and (2) hybrid natural scenes (see Fig. 3).

The fixed-phase natural scenes are those in which
the phase spectrum of each patch has been fixed to the same
constant phase spectrum. This manipulation results in the
configuration shown in Fig. 3(b). Because all patches of
all images now have the same phase spectrum, the only
variation between these patches is due to the amplitude
spectrum. Thus, the entropy of these fixed-phase patches
H fixed-phaseðA; PÞ is the entropy due to the amplitude spectrum:
H fixed-phaseðA; PÞ ¼ HðAÞ.

What we call “hybrid” natural scenes are those in which the
phase spectrum of each patch has been replaced with the
phase spectrum of another, randomly selected natural-scene
patch, which creates the configuration shown in Fig. 3(c).
This manipulation enforces statistical independence between
the amplitude and phase spectra, while maintaining the indi-
vidual entropies HðAÞ and HðPÞ. Thus, the entropy of these
hybrid patches HhybridðA; PÞ is the sum of the entropies due
individually to the amplitude spectrum and to the phase spec-
trum: HhybridðA; PÞ ¼ HðAÞ þHðPÞ.

Via these manipulations, HðPÞ can be computed by taking
the difference between the entropy found in the hybrid con-
dition and the entropy found in the fixed-phase condition:

I(A; P)
H(A)

H(P)

H
(A

,P
)

(a)
A and P statistically 

independent

H(A)

H(P)

H
(A

,P
)

(b)
A and P share mutual 
information I(A; P)

Fig. 2. Graphical illustration of the contributions of the information
in the amplitude spectrum HðAÞ and the information in the phase
spectrum HðPÞ to the total entropy HðA; PÞ. (a) If the amplitude
and phase spectra are assumed to be independent of each other, then
HðA; PÞ ¼ HðAÞ þHðPÞ. (b) Illustration of the contributions of HðAÞ
and HðPÞ to the total entropy when the amplitude and phase are sta-
tistically dependent and therefore possess some amount of mutual
information (overlap) IðA;PÞ.
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HðPÞ ¼ HhybridðA; PÞ −H fixed-phaseðA; PÞ; ð7Þ

¼ ½HðAÞ þHðPÞ� −HðAÞ: ð8Þ

Then, givenHðA; PÞ (natural scenes), HðAÞ (fixed-phase), and
HðPÞ, Eq. (6) can be rearranged as follows to compute the
amount of mutual information between amplitude and phase:

IðA;PÞ ¼ HðAÞ þHðPÞ −HðA; PÞ: ð9Þ

The following section provides details of the natural scenes
and manipulated (fixed-phase, hybrid) scenes used in
this study.

D. Experimental Stimuli
One hundred thirty-seven digitized natural scenes were se-
lected at random from the van Hateren database [32]. The
original images were of size 1536 × 1024 and contained
16 bit pixel values. A 1024 × 1024 section was cropped from
each image, and then the pixel values of that 1024 × 1024 sec-
tion were converted to a floating-point representation. The
(real-valued) pixels were offset and scaled to span the range

0–255 and then quantized to 8 bits (256 levels) of grayscale
resolution via uniform scalar quantization [33] in which
real-valued pixel x was mapped to its quantized (discrete-
valued) version xΔ via xΔ ¼ ⌊xþ 1

2 ⌋, where ⌊ · ⌋ denotes the
floor operator.

The 1024 × 1024 8 bit images were divided into patches in a
nonoverlapping, sequential raster-scan order starting from the
top-left corner of the image. Two patch sizes were employed
in this study: 4 × 4 patches and 8 × 8 patches. The 137 images
yielded 8,978,432 4 × 4 natural-scene patches and 2,244,608
8 × 8 natural-scene patches. Figure 4 depicts a random subset
of the stimuli used in this study (only 8 × 8 patches are
shown). The normal natural-scene patches are shown in
the left part of Fig. 4, the fixed-phase patches are shown in
the middle, and the hybrid patches are shown in on the right.

Patches for the fixed-phase condition were created from
the natural-scene patches by replacing the phase spectrum
of each patch with the phase spectrum obtained from a patch
containing just the central pixel set to a value of 255 and all
other pixels set to zero (see Fig. 5). (The specific phase spec-
trum employed here is not important; rather, the key is to
assign this same phase spectrum to all patches.) Patches
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Fig. 3. Graphical illustration of the strategy used in the current study to compute HðAÞ, HðPÞ, and IðA;PÞ. (a) The configuration shows the
assumed entropy of natural scenes HðA; PÞ in which HðAÞ and HðPÞ possess some amount of mutual information (overlap) IðA;PÞ. (b) The con-
figuration is achieved by setting the phase spectrum of all patches to a fixed-phase spectrum; this operation removes all variations due to phase,
which forcesHðPÞ ¼ 0, and thereforeHðAÞ is given by the entropy of the fixed-phase patches [i.e.,HðAÞ ¼ Hfixed−phaseðA; PÞ]. (c) The configuration
is achieved by creating hybrid images in which the phase spectrum of each patch is replaced with the phase spectrum of another natural-scene
patch selected at random; this operation removes any statistical dependence between amplitude and phase while maintaining the individual quan-
tities HðAÞ andHðPÞ. The entropy of the hybrid patches is thereforeHhybrid ¼ HðAÞ þHðPÞ, which allows us to compute bothHðPÞ and IðA;PÞ via
HðPÞ ¼ HhybridðA; PÞ −H fixed-phaseðA; PÞ and IðA;PÞ ¼ HhybridðA; PÞ −HðA; PÞ.

Fig. 4. Stimuli used in the experiment consisted of 4 × 4 and 8 × 8 natural-scene patches, fixed-phase patches, and hybrid patches (only 8 × 8
patches are shown). Each image depicts a random subset of sixty-four 8 × 8 patches. Left: Normal 8 × 8 natural-scene patches. Middle: Fixed-phase
8 × 8 patches generated by assigning the same fixed-phase spectrum to all patches; the amplitude spectrum was not adjusted. Right: Hybrid 8 × 8
patches generated by replacing the phase spectrum of each patch with the phase spectrum of another, randomly selected 8 × 8 natural-scene patch;
the amplitude spectrum was not adjusted.
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for the hybrid condition were created from the natural-scene
patches by replacing the phase spectrum of each patch with
the phase spectrum obtained from another natural-scene
patch selected at random.

Specifically, the fixed-phase and hybrid patches were cre-
ated as follows: let x denote a 4 × 4 or 8 × 8 natural-scene
patch, and let y denote a corresponding fixed-phase or hybrid
patch. For each natural-scene patch x, a two-dimensional dis-
crete Fourier transform (DFT) was applied to obtain the spec-
trum X. The amplitude spectrum jXj was then computed via

jXj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℜfXg2 þℑfXg2

q
; ð10Þ

where ℜfXg and ℑfXg denote the real and imaginary com-
ponents of X, respectively. Next, the spectrum of the fixed-
phase or hybrid patch, denoted by Y, was synthesized via

Y ¼ jXjej∠Z; ð11Þ

where ∠Z ¼ tan−1ðℑfZg
ℜfZgÞ denotes either the fixed-phase

spectrum shown in Fig. 5 (for the fixed-phase condition) or
the phase spectrum obtained from another randomly selected
natural-scene patch (for the hybrid condition). Finally, a two-
dimensional inverse DFT was applied to Y to obtain the fixed-
phase or hybrid patch y.

E. Nearest-Neighbor Search Procedure
The average log nearest-neighbor distance Eflog2 D�

Ngwas es-
timated by using an exhaustive, brute-force search procedure
as described in Section 2.A. To facilitate the implementation
of the search, the patches for each condition were randomly
separated into two groups: Group T (target patches) and
Group N (patches to serve as potential matches to the target
patches).

• Group T : For the 4 × 4 patches, T ¼ 65; 536 target
patches, selected at random, were placed into Group T .
For the 8 × 8 patches, T ¼ 16; 384 target patches, also selected
at random, were placed into Group T . These numbers of
patches correspond to approximately 0.7% of the total number
of 4 × 4 and 8 × 8 patches [34].

• Group N : For both patch sizes, N randomly selected
patches were placed into Group N . The value of N was se-
lected to take on power-of-two values up to 219, i.e.,
N ¼ 1; 2; 4; 8; 16; 32;…; 219. Thus, the number of patches in
Group N was made variable and ranged from N ¼ 1 to
N ¼ 219. We selected power-of-two values of N to obtain
equally spaced data points on the proximity distribution in
which the x axis (N) is plotted on a log2 scale.

As mentioned in Section 2.A, for each value of N , Eq. (3)
was used to estimate the average log nearest-neighbor dis-
tance Eflog2 D�

Ng. This estimate of Eflog2 D�
Ng was repeated

for ten trials, where each subsequent trial began by replacing
the T patches in Group T with another T randomly selected
patches, and by replacing the N patches in Group N with
another N randomly selected patches.

3. RESULTS AND ANALYSIS
As mentioned in Section 2.A, the proximity distribution spe-
cifies the average log nearest-neighbor distance Eflog2 D�

Ng
as a function of N . The corresponding relative dimensionality
specifies the inverse of the (negative) slope of the proximity
distribution at each value of N . In this section, we first present
and interpret the proximity distributions and relative dimen-
sionality curves, and then we present and analyze the resulting
entropy estimates.

A. Proximity Distribution and Relative Dimensionality
Figure 6 depicts the resulting proximity distribution curves for
4 × 4 and 8 × 8 patches. In each graph, the horizontal axis de-
notes N (the number of patches in Group N ), and the vertical
axis denotes the corresponding value of Eflog2 D�

Ng, averaged
over all ten trials conducted for each value of N . Error bars
denote �1 standard deviation of this average. For reference,
Fig. 6 also shows data for 4 × 4 and 8 × 8 patches of Gaussian
white noise; these data were computed analytically via
Eq. (10) from [15].

Two important observations can be made from the proxi-
mity distributions for both 4 × 4 and 8 × 8 patches. First, the
proximity distribution curve for the fixed-phase condition lies
below the curve for natural scenes, despite the fact that both
types possess the same amplitude spectra (and therefore the
same degree of spatial correlations). These data indicate that,
on average, fewer templates are required to describe a fixed-
phase scene to the same level of accuracy as that achieved for
a normal natural scene. As expected, by fixing the phase
spectra of the image patches, we make the image set more
redundant.

Second, the proximity distribution curve for the hybrid con-
dition lies above the curve for the natural scenes, which indi-
cates that more templates are required on average to describe
a hybrid scene to the same level of accuracy as that achieved
for a normal natural scene. Recall that in the hybrid condition,
the amplitude and phase spectra were (by design) statistically
independent. If the same were true for natural scenes, the two
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Fig. 5. The fixed-phase spectrum used for all patches in the fixed-
phase condition was generated by computing the discrete Fourier
transform of a 4 × 4 or 8 × 8 patch consisting of only the central pixel
set to a value of 255. The phase spectra ∠Z shown on the right were

computed via ∠Z ¼ tan−1
�
ℑfZg
ℜfZg

�
, where Z denotes the discrete Four-

ier transform of the central-pixel-on patches shown on the left. (The
specific phase spectrum employed here is not important; rather, the
key is to assign this same phase spectrum to all patches.)
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proximity distribution curves would be identical. The fact that
the proximity distribution curve for natural scenes lies below
the curve for the hybrid condition indicates the presence of
mutual information between the amplitude and phase spectra
in natural scenes.

Figure 7 shows the relative dimensionality curves for
4 × 4 and 8 × 8 patches. In each graph, the horizontal axis
denotes N and the vertical axis denotes the inverse of the
(negative) slope of the proximity distribution (i.e., −d log2ðNÞ=
dEflog2 D�

Ng), estimated via a difference in successive pairs of
Eflog2 D�

Ng. For reference, Fig. 7 also shows the relative
dimensionality data for patches of Gaussian white noise com-
puted analytically from Eq. (10) of [15].

Notice from both relative dimensionality graphs that
for most values of N (in particular, for N > 28), fixed-
phase patches appear lower-dimensional than natural-scene
patches, and natural-scene patches appear lower-dimensional
than hybrid patches, despite the fact that all of the 4 × 4 or 8 ×
8 patches have the same intrinsic dimensionality of, respec-
tively, k ¼ 16 and k ¼ 64. For the 4 × 4 patches, at N ¼ 219

samples, the dimensionalities are approximately 15, 14, 13,
and 11 for noise, hybrid, natural-scene, and fixed-phase
patches, respectively. Thus, compared to natural scenes, fix-
ing the phase spectrum decreases the relative dimensionality
by 15%, and breaking the statistical dependence between

amplitude and phase increases the relative dimensionality
by 8%. For the 8 × 8 patches, greater percentage changes
are observed: at N ¼ 219 samples, the dimensionalities are ap-
proximately 42, 25, 21, and 16 for noise, hybrid, natural-scene,
and fixed-phase patches, respectively. Compared to natural
scenes, fixing the phase spectrum decreases the relative di-
mensionality by 24%, and breaking the statistical dependence
between amplitude and phase increases the relative dimen-
sionality by 19%.

B. Entropy Estimates
As demonstrated in [15], rational extrapolations can be ap-
plied to the relative dimensionality curves to extend the proxi-
mity distributions and thereby estimate entropy. Specifically,
we defined the term XEntropy to denote this extrapolated en-
tropy estimate. Here, we employ the XEntropy C estimator,
which assumes that the relative dimensionality curves can
be described by the same functional form as the relative di-
mensionality curve for Gaussian white noise. This functional
form, RDðNÞ, is given by
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Fig. 6. Proximity distribution curves for 4 × 4 (top) and 8 × 8 (bot-
tom) patches. In each graph, the horizontal axis denotes N (the num-
ber of patches in Group N ) and the vertical axis denotes the
corresponding Eflog2 D�

Ng estimated via a sample mean over all target
patches (average of 10 randomizations of Groups T and N ). Error
bars denote �1 standard deviation. The data for Gaussian noise, pro-
vided for reference, were computed analytically via Eq. (10) from [15].
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Fig. 7. Relative dimensionality curves for 4 × 4 (top) and 8 × 8 (bot-
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Ng at each N . Error bars denote �1 standard deviation.
The solid gray line denotes the intrinsic dimensionality of k ¼ 16
(4 × 4) or k ¼ 64 (8 × 8). The data for Gaussian noise were computed
analytically via Eq. (10) from [15].
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RDðNÞ ¼ −ðlogN þ b0Þ2=ða2½logN �2
þ 2a2b0 logN þ a1b0 − a0Þ; ð12Þ

where a2 ¼ −1=k, a0 ¼ 65:05, and the parameters a1 and b0
were adjusted to fit the measured data by using a trust-region
search procedure [35].

We are in no way implying that Eq. (12) is an optimal ex-
trapolation of these data. Rather, this functional form was
chosen (1) for its relative simplicity (it is a rational function
in logN); (2) for the fact that it converges on the dimension-
ality of the data in the limit of large N , i.e., limN→inf RDðNÞ ¼
−1=a2 ¼ k; and (3) because it provides decent fits to the data
obtained both in the current study and in our previous study
[15]. In [15], we showed that XEntropy C can provide accurate
estimates of manipulated natural-scene patches with known
entropy as long as the pixel intensities are fundamentally
noise-limited (e.g., due to photon noise, quantization noise),
which is the case for the patches used in the current study.
However, although we believe that this is a rational extrapola-
tion, we also believe that future work will allow more theore-
tically accurate extrapolations.

Figure 8 shows the extrapolated relative dimensionality
curves, and Fig. 9 shows the corresponding entropy estimates,
computed via Eq. (4) from each (extrapolated) value of
Eflog2 D�

Ng at each N . The final estimates of entropy listed
in Fig. 9 were computed by using Eq. (A3) with k ¼ 16
(4 × 4) or k ¼ 64 (8 × 8) and N chosen such that the relative
dimensionality was within 1% of the intrinsic dimensionality
(1% of k). The final entropy estimates for the natural scenes,
fixed-phase scenes, and hybrid scenes are also listed in
Table 1.

For the 4 × 4 patches, natural scenes have an entropy of
53 bits (entropy rate of 3:3 bits=pixel). The fixed-phase
patches yield a lower entropy of 31 bits (1:9 bits=pixel).
The hybrid patches yield the highest entropy of 57 bits
(3:6 bits=pixel). As mentioned in Section 2.C, the entropy in
the fixed-phase condition is the entropy due to the amplitude
spectrum HðAÞ ¼ 31bits, whereas the entropy in the hybrid
condition is HðAÞ þHðPÞ ¼ 57bits. The entropy due to the
phase spectrum is therefore HðPÞ ¼ 57 − 31bits ¼ 26bits.
Thus, for 4 × 4 patches, the amplitude spectrum contributes
approximately 59% to the total information in natural-scene
patches, and the phase spectrum contributes approximately
49%. Note that the sum of these two percentages is approxi-
mately 108%, indicating that about 8% of the information
is common to both spectra (mutual information). As
mentioned in Section 2.C, the mutual information IðA;PÞ is
given by difference between the entropy of hybrid patches
HðAÞ þHðPÞ ¼ 57bits and the entropy of natural scenes
HðA; PÞ ¼ 53bits; thus, IðA;PÞ ¼ HðAÞ þHðPÞ −HðA; PÞ ¼
57 − 53bits ¼ 4 bits [8% of HðA; PÞ].

For the 8 × 8 patches, in line with what we found in [15],
natural scenes have an entropy of 193 bits (3:0 bits=pixel)
(184 bits and 2:9 bits=pixel were reported in [15], which used
only a subset of the images employed here). The fixed-phase
patches yield a lower entropy of 104 bits (1:6 bits=pixel).
Again, the hybrid patches show the highest entropy of
213 bits (3:3 bits=pixel). Thus, HðAÞ ¼ 104bits and HðPÞ ¼
213 − 104bits ¼ 109bits. These data reveal that for 8 × 8
patches, the amplitude spectrum contributes approximately
54% to the total information in natural-scene patches, the

phase spectrum contributes approximately 56%, and there
is approximately 10% mutual information (IðA;PÞ ¼ HðAÞþ
HðPÞ −HðA; PÞ ¼ 213 − 193 bits ¼ 20bits [10% of HðA; PÞ]).

Comparing the 4 × 4 data to the 8 × 8 data, the results reveal
that as the patch size increases, the information due to the
amplitude spectrum decreases while the information due to
the phase spectrum increases. We expect that for even larger
patches, the phase spectrum will continue to contribute more
and more to the total information, whereas the amplitude
spectrum will move closer to the characteristic 1=f trend
and therefore contribute a progressively smaller percentage
(see Section 4). However, the results also reveal an increase
in the amount of mutual information as the patch size in-
creases both in terms of the entropy (4 bits for 4 × 4 versus
20 bits for 8 × 8) and in terms of the entropy rate
(0:25 bits=pixel for 4 × 4 versus 0:31 bits=pixel for 8 × 8).
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Fig. 8. Extrapolated relative dimensionality curves for 4 × 4 (top)
and 8 × 8 (bottom) patches using the XEntropy C estimator from
[15]. In each graph, the horizontal axis denotes N (the number of
patches in Group N ) and the vertical axis denotes the correspond-
ing relative dimensionality computed via RDðNÞ ¼ −ðlogN þ b0Þ2=
ða2½logN�2 þ 2a2b0 logN þ a1b0 − a0Þ, where a2 ¼ −1=k and a0 ¼
65:05, and where the parameters a1 and b0 were adjusted to fit the
measured data. The solid gray line denotes the intrinsic dimensional-
ity of k ¼ 16 (4 × 4) or k ¼ 64 (8 × 8).
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4. DISCUSSION
In this paper, we have used proximity distributions to com-
pare the amounts of information provided by the amplitude
(power) and phase spectra, and the amount of mutual infor-
mation between these spectra, for patches of natural scenes.

A. Information Content of Amplitude versus Phase
For our 4 × 4 patches, the total entropy was estimated to be
53 bits or 3:3 bits=pixel. For this total, 59% is carried by the
amplitude spectrum, 49% is carried by the phase spectrum,
and 8% is part of the shared (mutual) information between
the amplitude and phase spectra. For our 8 × 8 patches, the
total entropy was estimated to be 193 bits or 3:0 bits=pixel.

For this total, 54% is carried by the amplitude spectrum,
56% is carried by the phase spectrum, and 10% is part of
the shared (mutual) information between the amplitude and
phase spectra.

Although our technique makes it difficult to provide an
accurate estimate with larger patches, we expect that the am-
plitude spectrum of larger patches will carry a smaller propor-
tion of the total information (although larger in absolute bits).
With larger patches, the average contrast will be more consis-
tent (regression toward the mean). We expect that as the
patch size increases, the slope of the amplitude spectrum’s
falloff will move closer to the typical 1=f found to be common
in the literature [1,2,18]. With large images, we may well find
that a higher proportion of the information in the image is
found in the phase spectrum.

To illustrate this argument, Fig. 10 shows the distribution of
rotationally averaged amplitude-spectrum slopes for 2000 im-
age patches of size 8 × 8, 32 × 32, and 256 × 256 pixels. The
slopes correspond to the parameter α obtained by fitting each
patch’s rotationally averaged amplitude spectrum with a func-
tion of the form 1=f α, where f corresponds to radial fre-
quency. As one can see, the variance of average slopes is
much larger for the smaller patches. This is not surprising,
since many of our 8 × 8 patches have very low contrast and
are dominated by noise (a flat spectrum). However, for 256 ×
256 patches, no image is of very low contrast or low mean
intensity. With multiple features at different scales, these lar-
ger images converge on the mean amplitude spectrum.

B. Perceptual Importance of Amplitude versus Phase
The results of this study also allow us to address the ideas
presented by Oppenheim and Lim [19], Piotrowski and Camp-
bell [20], and Morgan et al. [22]. Each of these studies argued
that in large images, the information is carried perceptually by
the phase spectra. As we noted earlier, if the amplitude spec-
tra of two different images are similar (e.g., close to 1=f ), then
it would follow that exchanging the amplitude spectra would
produce little perceptual change (simply because the ampli-
tude spectra are similar).

However, Morgan et al. [22] noted that for small image
patches, it was the amplitude spectrum that appeared to dom-
inate perceptually. For small image patches, the patch is often
dominated by a single edge. Under such circumstances, the
orientation of the edge is well described by the amplitude
spectrum with most of the energy at that orientation. It is
therefore not surprising that the amplitude spectrum of a
small patch provides a fairly good account of the perception
of the edge.
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Fig. 9. Entropy estimates for 4 × 4 (top) and 8 × 8 (bottom) patches
computed for each value of N using the XEntropy C estimator from
[15]. The final entropy estimate listed for each curve was computed
by using Eq. (A3) with k ¼ 16 (4 × 4) or k ¼ 64 (8 × 8) and N chosen
such that the relative dimensionality was within 1% of the intrinsic
dimensionality.

Table 1. Entropy Estimates for 4 × 4 and 8 × 8 Patchesa

Nat. Scenes HðA; PÞ Fixed Phase HðAÞ Hybrid HðAÞ þHðPÞ HðPÞ IðA;PÞ
4 × 4 patches bits 53 31 57 26 4

bits/pixel 3.3 1.9 3.6 1.6 0.25
% of HðA; PÞ 100% 58.5% 107.5% 49.1% 7.5%

8 × 8 patches bits 193 104 213 109 20
bits/pixel 3.0 1.6 3.3 1.7 0.31

% of HðA; PÞ 100% 53.9% 110.4% 56.5% 10.4%
aHðA; PÞ denotes the entropy of natural-scene patches; HðAÞ denotes the entropy due to the amplitude spectrum; HðPÞ denotes the entropy due to the phase

spectrum; IðA;PÞ denotes the mutual information between amplitude and phase; HðAÞ þHðPÞ is the entropy that would result if the amplitude and phase spectra
were independent [i.e., if IðA;PÞ were zero].
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To illustrate this argument, Fig. 11 shows a random collec-
tion of 8 × 8 and 64 × 64 image patches that exceeded a fixed
threshold contrast. As one can see, most of the 8 × 8 patches
are dominated by a single orientation. However, for larger
patches we typically see multiple edges within the patch.
A change in the relative position of an edge is primarily deter-
mined by the phase spectrum. Therefore, large images with
features at multiple orientations and scales are more likely
to converge on the 1=f amplitude spectrum. It has previously
been argued that the 1=f spectrum results from a simple sum
of features at multiple scales or from a similar set of occluding
surfaces [1,23].

C. Role of Amplitude versus Phase in Efficient Neural
Coding
As we mentioned in Section 1, because the amplitude spec-
trum is the square root of the Fourier transform of the auto-
correlation function, the amplitude spectrum simply provides
an alternative description of the pairwise correlations in an
image. Neural coding strategies such as linear Hebbian learn-
ing that rely only on these correlations can therefore capture
information only from the amplitude spectrum. On the other
hand, techniques such as sparse coding [4] and ICA [7] employ
a preprocessing stage that whitens the images, and thus these
latter types of networks focus on the information provided by
the phase spectrum.

Based on our results, most of the information in 4 × 4
patches is contained in the amplitude spectrum (59% ampli-
tude versus 49% phase). Thus, for 4 × 4 patches, a linear
Hebbian network or other network that relies on spatial cor-
relations should, in theory, be able to discover a more efficient
code than that obtained from a network that employs whiten-
ing. However, for 8 × 8 patches, which is a size more
commonly used in efficient neural coding techniques, the re-
verse trend is observed. For 8 × 8 patches, the phase spectrum
contains slightly more information than the amplitude spec-
trum (54% amplitude versus 56% phase). This finding may help
provide a partial account for the success of techniques such as
sparse coding [4] and ICA [7].

However, for both patch sizes, our results also show that
there is some information common to both types of spectra.
Approximately 8% and 10% of mutual information was found
to exist between the amplitude and phase spectra for 4 × 4 and
8 × 8 patches, respectively. Thus, a neural coding strategy or
an image-processing algorithm that uses only the amplitude
spectrum or only the phase spectrum may be able to discover
a feature that is seemingly attributable to the other type of
spectrum. However, given the relatively small amount of mu-
tual information and the relatively minor increase in mutual
information observed when doubling the patch size, our re-
sults also suggest that an optimal block-based coding or pro-
cessing strategy should ideally consider both types of spectra,
at least when operating at the 4 × 4 or 8 × 8 level (in image
processing, 8 × 8 is a very commonly used block size).

D. Limitations and Extensions
Although we believe that the technique employed here is a
powerful method for measuring information in relatively
high-dimensional data sets, we also need to provide caution.
The numbers reported here apply only to our 4 × 4 and 8 × 8
image patches and should not be considered universal for all
natural scenes. Our estimates are also based on extrapola-
tions, and although we continue to explore the accuracy of
these extrapolations, we can not guarantee that our extrapo-
lations are optimal.

Our images are drawn from the van Hateren database [32].
Such images are not necessarily a good representation of
images drawn from typical human experience, or from the
web. The van Hateren database is attractive due to its wide-
spread use; however, the results presented here are depen-
dent on factors such as camera blur, scene content, noise,
and the average contrast and intensity of the patches. Darker
images have a lower absolute range that would reduce the
number of bits. Although we cannot conclude that these
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Fig. 10. Top: Distribution of rotationally averaged slopes for 2000
natural-scene patches of 8 × 8, 32 × 32, and 256 × 256 pixels. Bottom:
Standard deviation of average slopes as a function of patch size. No-
tice that there is much more variation in slope for smaller patches.
(The slope here refers to the parameter α obtained by fitting the ro-
tationally averaged amplitude spectrum with a function of the form
1=f α, where f corresponds to radial frequency; only values of f > 0
were used in the fitting.)

Fig. 11. Random collection of 8 × 8 (left) and 64 × 64 (right) patches
with a standard deviation of pixel values greater than 35. For small
patch sizes such as 8 × 8, most of the patches are dominated by a sin-
gle edge; in this case, the orientation of the edge is well described by
the power spectrum with most of the power at that orientation, and
thus the power spectrum provides a fairly good account of the percep-
tion of the edge. However, for larger patches, features tend to occur at
multiple orientations and scales, and thus the power spectrum is clo-
ser to 1=f ; in this latter case, the visual appearance of each patch is
dictated more by its phase spectrum.
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results are generally true of all image collections, the techni-
que presented here can be applied to any particular image
collection.

The patch sizes are also relatively small, which do not allow
simple extensions to larger images. As the size of the image
database increases, we will be able to provide more accurate
estimates of the entropy of larger images. Each doubling of
the size of the database allows us to move out one more step
on the distribution function. Nonetheless, although our cur-
rent method may seem to require a relatively large number
of samples (219 images), this is still far fewer than any direct
method of Shannon entropy requiring probabilities on 264

images.
In future work, we hope to extend this approach to larger

images. We also believe that the approach can be used with
techniques like sparse coding and ICA to determine howmuch
mutual information remains after various stages of efficient
coding.

5. CONCLUSIONS
This paper provides a new technique and a set of results
for evaluating the relative proportions of different forms of
information in natural scenes. The technique compares the in-
formation in natural-scene patches with the information in
corresponding patches with altered phase spectra. Here, we
applied this technique to estimate the information contained
in the power and phase spectra of 4 × 4 and 8 × 8 natural-
scene patches. For our 4 × 4 patches, we found that 59% of
the information in the images is carried by the amplitude spec-
trum, 49% is carried by the phase spectrum, and 8% is part
of the shared (mutual) information between these spectra.
For our 8 × 8 patches, we found that 54% is carried by the am-
plitude spectrum, 56% is carried by the phase spectrum, and
10% is part of the mutual information. We discussed how these
results provide important insights into the sources of redun-
dancy that may allow for compression and efficient coding by
the human visual system.

APPENDIX A
The estimation of entropy based on nearest-neighbor dis-
tances was initially proposed by Kozachenko and Leonenko
[28], then was later applied to neural data by Victor [29]
and subsequently to the estimation of mutual information
by Kraskov et al. [30] and by Kybic [31]. This is a so-called
binless estimator of differential entropy that operates by es-
timating iXðxÞ≜ − log2 f XðxÞ via nearest-neighbor distances,
where X denotes a (possibly vector-valued) random variable
with corresponding probability density function fXðxÞ. In this
formulation, differential entropy, hðXÞ, is the expected value
of iXðxÞ:

hðXÞ≜ −

Z
x∈A

f XðxÞ log2 f XðxÞdx ¼
Z
x∈A

f XðxÞiXðxÞdx

¼ EfiXðxÞg ≈
1
M

XM
m¼1

îXðxmÞ; ðA1Þ

where the final relation approximates the expectation in the
third relation with the sample mean computed using M ob-
served samples, x1; x2;…; xM , drawn according to f X. Specifi-
cally, the approximation results from (1) replacing the integral

with a sum, (2) assuming f XðxÞdx ≈ 1
M, ∀xm, and (3) using

îXðxmÞ as an estimator of iXðxmÞ.
The estimator îXðxÞ is computed based on the Euclidean

distance D�
N between x and its nearest neighbor among the

remaining N ¼ M − 1 observations as

îXðxÞ ¼ kEflog2 D�
Ng þ log2

�
AkN
k

�
þ γ
ln 2

; ðA2Þ

where γ is the Euler constant and Ak ¼ kπk=2=Γðk2 þ 1Þ denotes
the surface area of a k-dimensional hypersphere. Combining
Eqs. (A1) and (A2), hðXÞ is approximated by

hðXÞ ≈ −
k
M

XM
m¼1

log2 D�
N;m þ log2

�
AkN
k

�
þ γ
ln 2

; ðA3Þ

whereD�
N;m is the Euclidean distance between xm and its near-

est neighbor among the other N ¼ M − 1 observations.
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