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The processing of spatial information by the visual system shows a number of similarities to the
wavelet transforms that have become popular in applied mathematics. Over the last decade,

a range of studies have focused on the question of why the visual system would evolve this
strategy of coding spatial information. One such approach has focused on the relationship
between the visual code and the statistics of natural scenes under the assumption that the visual
system has evolved this strategy as a means of optimizing the representation of its visual
environment. This paper reviews some of this literature and looks at some of the statistical
properties of natural scenes that make this code efficient, It is argued that such wavelet

codes arc efficient because they increase the independence of the outputs of the vectors (i.c.,
responses of the visual neurons) by finding the sparse structure available in the input. Studies with
neural networks that attempt maximize the sparseness of the representation have been

shown to produce vectors {neural receptive fields) that have many of the properties of a wavelet
representation. It is argued that the visual environment has the appropriate sparse structure

that allows these codes to be effective. It is argued that these sparse/independent representations
make it computationally easicr to deteet and represent the higher-order structure present in
complex environmental data. © 1999 The Optical Societv of dmerica. [S1070-9762(99)00509-6]

INTRODUCTION

Over the last decade, the wavelet transform in its various

incarnations has grown to be a highly popular means of

analysis with a wide range of applications in processing
natural signals. Although there is some debate regarding who
developed the first wavelet transform, most of these apply to
only this century. In this paper, we consider wavelet-like
transforms that predate these recent studies by possibly as
much as several hundred million years. These wavelet-like
transforms are found within the sensory systems of most ver-
tebrates and probably a number of invertebrates. The most
widely studied of these is the mammalian visual system. This
paper focuses on recent work exploring the visual systems
response to spatial patterns and on recent theories of why the
visual system would use this strategy for coding its visual
environment. Much of this work has concentrated on the
relationship between the mathematical structure of the envi-
ronment {e.g., the statistics of natural scenes). and these
wavelet-like properties of the visual system’s code.'”'® The
first section begins by looking at the visual system’s wavelet-
like transform of spatial information. We then look at some
of the statistical regularities found in natural images and their
relationship to the properties of the visual transform. In par-
ticular, we will review research that suggests that the particu-
lars of this coding strategy result in a nearly optimal sparse/
independent transform of natural scenes. Finally, we look at
a neural network approach that attempts to search for effi-
cient represeniations of natural scencs, and results in a
wavelet-like representation with many similarities to that
found in the visual cortex.

THE MAMMALIAN VISUAL SYSTEM

Although there are number of differences between the
visual systems of different mammals, there are a consider-
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able number of similarities, especially in the representation
of spatial information. The most extensively studied systems
are those of the cat and the monkey, and it is studies on these
animals that provide the basis of much of our knowledge
about visual coding. The acuity of the cat is significantly
lower than that of the monkey, but within the range of sen-
sitivities covered by these visual systems (ie., the spatial
frequency range), the methods by which spatial information
is processed follows a number of similar rules. The area that
we will be considering is a region at the back of the brain
referred to as primary visual cortex (Area V1). This area is
the principal projection area for visual information and con-
sists of neurons that input from neurons in the eye (via an
area called the lateral geniculate nucleus, LGN).

Hubel and Weisel'® were the first to provide a spatial
mapping of the response properties of these neurons. The
map describing the response region of the cell is referred to
as the “‘receptive field.”” Figure 1 shows examples of the
type of receptive fields that are obtained from these neurons,
It a spot of light is shown within the receptive field, then the
cell may either increase its firing rate (excitation) or decrease
its firing rate (inhibition), depending on the region. The neu-
rons in the primary visual cortex are described as ““simple
cells™ and are marked by clongated excitatory regions {caus-
ing an increase in the number of spikes) and inhibitory re-
gions (causing a decrease in the number of spikes).

Figure 1 shows results from two laboratories looking at
the receptive ficld profiles of cortical simple cells in the cat.
On the left (a, b, ¢, d) are results from Jones and Palmer,’
showing the two-dimensional receptive field profiles of X
cortical simple cells. The data on the right (e, 1) show results
from DeValois e al.' that represent the spatial-frequency
tuning of a variety of different cortical cells when plotted on
both a log (d) and a linear frequency plot (¢). Although there
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FIG. 1. Examples of receptive fields of neurons of area VL. See text for explanation.

is significant variability, bandwidths increase with increasing
frequency (i.e. on the linear axis {¢})). Therefore, when band-
widths are plotted on the log axis (d), they remain roughly
constant at different frequencies.

With diffuse illumination or a line placed horizontally
across the receptive field, the excitation and inhibition will
typically cancel and the cell will not respond. Different neu-
rons respond to different positions within the visual field.
Furthermore, at any given position in the visual field, differ-
ent neurons have receptive ficlds oriented at different angles
and show a variety of sizes. Thus, the entire visual field is
covered by receptive fields that vary in size and orientation.
Neurons with receptive fields like the one above were de-
scribed by Hubel and Weisel as “*simple cells’” and were
distinguished from other types of neurons in the primary
visual cortex referred to as ‘‘complex” and “*hypercom-
plex.” (The principal difference is that these neurons show a
higher degree of spatial nonlinearity.)

Throughout the 1960s and 70s, there was considerable
discussion of how to describe these receptive-field profiles
and what the function of these neurons might be. Early de-
scriptions described these cells as edge and bar detectors, and
it was suggested that the visual code was analogous to algo-
rithms performing a local operation like edge detection.'® In
opposition to this way of thinking were those that used the
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terms of lincar systems theory.”" In the latter case, the cells’
selectivity was described in terms of their tuning to orienta-
tion and spatial frequency.?'~? It was not until 1980 that the
functions describing these receptive ficlds®* were considered
in terms of Gabor’s *‘theory of communication.””** Marcelja
noted that the functions proposed by Gabor to analyze time-
varying signals showed a number of interesting similaritics
to the receptive ficlds of cortical neurons.

Marcelja’s suggestion was that the profile described by
the line weighting function (Fig. lc) appeared to be well
described by a Gaussian modulated sinusoid:??

fx)=sin(2jkx+q)e >, (1

This tunction, now referred to as a Gabor function, has
served as a model of cortical neurons for a wide variety of
visual scientists. Early tests of this notion showed that such
functions did indeed provide an excellent fit to the receptive
fields of cortical neurons.'”?*?" Daugman®® and Watson®®
generalized Gabor’s notion to the two dimensions of space
where the two-dimensional basis function is described as the
product of a two-dimensional Gaussian and a sinusoid. Al-
though Jones and Palmer'’ found that the full two-
dimensional receptive field profiles were well described by
this two-dimensional Gabor function, other studies®®*' have
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found that other types of functions (e.g., a sum of Gaussians)
may provide a better fit. Although some of the differences
between these various models may prove to be important, the
differences are not large. All of the basis functions proposed
involve descriptions in terms of oriented functions that are
well localized in both space and frequency. However, no
single basis set will be capable of describing all of the recep-
tive field types that are found in the mammalian visual cor-
tex. There is significant variability in receptive field profiles
and their spectra. For example, the bandwidths of cortical
cells average around 1.4 octaves (width at half height), but
bandwidths less than 1.0 or greater than 2.0 octaves are
found.'**

WAVELET-LIKE TRANSFORMS

When these cortical codes were first converted to math-
ematical representations, 8793 they were known as Gabor
transforms, self-similar Gabor transforms, or log-Gabor
transforms.” However, more recently, with the popularity of
the wavelet ideas, these transforms have come to be known
as wavelet or wavelet-like transtorms. However, in most of
these transforms, the basis vectors are not orthogonal. Fur-
thermore, it is also common that these functions are trun-
cated in both spacc and frequency (e.g., a fixed window
size). Finally, these transforms may not be in a 1:1 relation to
the numbers of pixels and instead may be overcomplete with
many more basis vectors than the dimensionality of the
data.* In visual rescarch, most of these aspects of the trans-
form are not crucial to the questions that are addressed. Only
in cases where there is an attempt to reconstruct the in puts do
issues of orthogonality and critical sampling become a major
issue.

IMAGE TRANSFORMS AND THE STATISTICS OF NATURAL
SCENES

There are various ways to describe the statistical redun-
dancy in a data set. One approach is to consider the nth-order
statistical dependences among the basis vectors. This works
well when the basis vectors have binary outputs like letters,
where the frequency can be defined by a single number.
However, for data that a show a continuous output, it can
often be useful to consider a description of images in terms
of a state-space where the axes of the space represent the
intensities of the pixels of the image. For any n-pixel image,
one requires an n-dimensional space to represent the set of
all possible images. Every possible image (e.g., a particular
face, tree, etc.) is represented in terms of its unique location
in the space. The white noise patterns shown in Fig. 2 (i.e.,
patterns with random pixel intensities), represent random lo-
cations in that n-dimensional space. The probability of gen-
erating anything resembling a natural scene with random
pixel intensitics is extremely low. This suggests that, in this
state-space of possible scenes, the region occupied by natural
scenes is extremely low.

Figure 2 shows noise in comparison with natural scenes.
Just as any image can be represented as a point in the state
space of possiblc images, it is also possible to describe the
response of any particular visual neuron in terms of the re-
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FIG. 2. Image of noise in comparison with natural scenes.

gion of the state-space that can produce a response. If the
neuron’s response is linear. we can treat it as a vector pro-
Jecting from the origin into the state-space, and its response
is simply the projection of the point representing the image
against this vector. In reality, visual neurons show a variety
of very interesting and important nonlinearities. However, it
is argued that treating the visual cells as linear to a first
approximation provides a means of exploring the relative
advantages of different response properties (e.g., orientation
tuning, spatial-frequency tuning, localization, etc.).

In addition, with the state-space description, any ortho-
normal transform such as the Fourier transform is simply a
rotation in the statc-space.” Although wavelet transforms
may be orthogonal **** the wavelet transforms used by the
visual system and in the analyses that follow are neither or-
thogonal nor normal. Nonetheless, we can treat the visual
code to a first approximation as a rotation of the coordinate
system. If the total number of vectors remains constant, a
rotation will not change the entropy or the redundancy of the
overall representation. The question then becomes why the
visual system would cvolve this particular rotation. Or, more
specifically, what is it about the population of natural scenes
that would make this particular rotation useful? Several theo-
ries have been proposed and the following sections will con-
sider two of the principa] theories as well as a more general
approach, referred to as independent components analysis,
or ICA.

THE GOAL OF VISUAL CODING

Why and when are wavelet codes effective? And what is
the reason that the wavelet-like transform would evolve
within the mammalian visual system? Some of the early
theories of sensory coding were developed by Barlow,® who
suggested that one of the principal goals should be to reduce
the redundancy of the representation. Field” contrasted two
approaches to transforming redundancy. We will discuss
these below and follow this with a discussion of a process
called independent components analysis (ICA) that has
gained considerable attention.

Figure 3 shows two examples of two-dimensional data
scts and the effects that a particular transform (e.g., a rota-
tion} has on the outputs. In Fig. 3a, the data are correlated,

D. J. Field 790




a
Region of Histograms

space

Region of
~ space

Histograms

and the collection of data form a Gaussian cllipse. The figure
shows a rotation to align the vectors with the correlations
(i.c., the axes of the ellipse). After the rotation. there cxist no
correlations in the data; however, the basis vectors now have
unequal variance. In this new coordinate system, most of the
variance in the data can be represented with only a single
vector (4"). Removing B’ from the code produces only a
minimal loss in the description of the data. This rotation of
the coordinate system to allow the vectors to be aligned with
the principal axes of the data is what is achieved with a
process called principal component analysis (PCA)-—
sometimes called the Karhounen-Locve transform. The
method provides a means of compressing high-dimensional
data onto a subset of vectors.

Figure 3 shows the state-spaces and projections of two
populations of two-dimensional data. The left shows data
that are correlated. The right shows data that are not corre-
lated but arc sparse.

PRINCIPAL COMPONENTS AND THE AMPLITUDE
SPECTRA OF NATURAL SCENES

An interesting and important idea involves PCA when
the statistics of a data set are stationary. Stationarity implies
that over the population of images in the data set (e.g., all
natural scenes), the statistics at one location are no different
than at any other location. Across all images

Plxixieq,%: 42 ,...)=P(xjfx}-+] S FREINS ) 2)

for all i and j. This is a fairly reasonable assumption with
natural scenes, since it implies that there are no special loca-
tions in an image where the statistics tend to be different
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FIG. 3. Examples of two-dimensional
data and the effect on the output as a
‘result of a determinate transformation
{a rotation). P is the probubility of a
response, and Am is the amplitude of
the response.

{e.g.. the camera does not have a preferred dircetion). It
should be noted that stationarity is not a description of the
presence or lack of local features in an image. Rather, sta-
tionarity implies that, over the population, all featares have
the same probability of occurring in one location versus an-
other. When the statistics of an image sct are stationary, the
amplitudes of the Fourier coefficients of the image must be
uncorrelated.” This means that, when the statistics of a data
set are stationary, all the redundancy reflected in the corre-
lations between pixels is captured by the amplitude spectra
of the data. This should not be surprising, since the Fourier
transform of the autocorrelation function is the power spec-
trum. Therefore, with stationary statistics, the amplitude
spectrum describes the principal axes (i.e., the principal com-
ponents) of the data in the state space.’” With stationary data,
the phase spectra of the data are irrelevant to the directions
of the principal axes.

As noted pre\f'iously,4 an image that is scale invariant
will have a well-ordered amplitude spectrum. For a two-
dimensional image, the amplitudes will fall inversely with
frequency (i.e., power falls as k= — 2). Natural scencs have
been shown to have spectra that fall as roughly = —2 463%39
If we accept that the statistics of natural images are station-
ary, then k= —1 amplitude spectrum provides a complete
description of the pairwise correlations in natural scenes. The
amplitude spectrum certainly does not provide a complete
description of the redundancy in natural scenes, but it does
describe the relative amplitudes of the principal axes.

A number of recent studies have discussed the similari-
ties between the principal components of natural scenes and
the receptive fields of cells in the visual pathway.'~>'%/2+041
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And there have been a number of studies that have shown
that, under the right constraints, units in competitive net-
works can develop large oriented receptive fields.*>** How-
ever, PCA will not produce wavelet-like transforms, since
they depend on only the amplitude spectrum. The resulting
functions will not be localized and can therefore not scale
with frequency.

To account for the localized, self-similar aspects of the
wavelet coding, it has been argued that one must go bevond
this second-order structure as described by the amplitude
spectrum and the principal components.**™* However, does
an understanding of the amplitude spectrum provide any in-
sights into the visual system’s wavelet code? Field* argued
that, if the peak spatial frequency sensitivity of the wavelet
bases is constant, the average response magnitude will be flat
in the presence of images with 1/f amplitude spectra. Brady
and Field*® and Field and Brady*® propose that this model
provides a reasonable account of the sensitivity of neurons
and has some support from visual neurophysiology.*” In such
models, the vector magnitude increases in frequency. with
peak magnitude around 25 cycles/deg. Although this appears
to conflict with the threshold-sensitivity measurements,
which suggests sensitivity peaking at 4 cycles/ deg, consider
the two figures shown in the lower part of Fig. 3. The white
noise, it is argued, will appear to the reader to be dominated
by high spatial frequencies as predicted by this sensitivity
profile. The 1/ image, on the other hand, appears to have
structure at a variety of scales, again as predicted by this
model of sensitivity.

Atick and Redlich™ have suggested that the spatial fre-
quency tuning of retinal ganglion cells is well matched to the
combination of amplitude spectra of natural scenes and high-
frequency quantal limitations found in the natural environ-
ment. They have stressed the importance that the role of the
noise has in limiting information processing by the visual
system and have effectively argued that the falloff in fre-
quency sensitivity of individual neurons and the system as a
whole is due to the decrease in signal to noise at these higher
frequencies.

Since the principal components conform to the Fourier
coefficients for natural scenes and since the amplitudes of the
Fourier coefficients fall with increasing frequency, removing
the lowest-amplitude principal components of natural scenes
effectively removes the high spatial frequencies. Removing
the high spatial frequencies is the most effective means of
reducing the dimensionality of the representation with mini-
mal loss in entropy. This is exactly what occurs in the early
stages of the visual system. The number of photoreceptors in
the human eye is approximately 120 million, and this is re-
duced to approximately | million fibers in the optic nerve.
This compression is achieved almost entirely by discarding
the high spatial frequencies in the visual periphery. Only the
fovea codes the highest spatial - frequencies with eye-
movements, allowing this high-acuity region to be directed
towards points of interest.

Therefore, it is argued that the visual system does per-
form compression of the spatial information, and this is pos-
sible because of the correlations in natural scenes. However,
the two insights one gains from this approach are in under-
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FIG. 4. Examples of distributions with different kurtosis values. Py is the
probability of a response, and Ly is the level of the response.

standing the spatial-frequency cutoff (especially in the visual
periphery) and in understanding the relative sensitivity of
visual neurons as a function of spatial frequency. To account
for the wavelet-like properties of localization, the spatial-
frequency tuning and self-similarity found in the visual cor-
tex, we must consider statistics beyond the pairwise correla-
Hons.

DISCOVERING SPARSE STRUCTURE

How does the presence of sparse localized structure
modify the state-space? Field” has suggested the simplified
state-space shown above in Fig. 3b to characterize sparse
structure. In this particular example, the data are not corre-
fated. However, the data are redundant, since the state-space
is not filled uniformly. One might think of these data as
containing two kinds of structure: pixcls that are positively
correlated and pixels that are negatively correlated. This is
generally true of neighboring pixels in images that have been
“whitened™ to remove the pairwise correlations. If a pixel
has a non-zero value, the neighboring pixel also is likely to
have a non-zero value, but the polarity of the value cannot be
predicted, since the pixel values are uncorrelated.

The same transformation performed as before (i.e., a ro-
tation) produces a marked change in the histograms of the
basis functions A’ and B’. This particular data set allows a
sparse response output. Although the variance of each basis
function remains constant, the histogram describing the out-
put of cach basis function has changed considerably. After
the transformation, vector A’ is high or vector B’ is high, but
they are never high at the same time. The histograms of each
vector show a dramatic change. Relative to a normal distri-
bution, there is a higher probability of low magnitude and a
higher probability of a high magnitude, but a reduction in the
probability of a mid-level magnitude.

This change in shape can be represented in terms of the
kurtosis of the distribution, where the kurtosis is defined as
the fourth moment, according to:

. A
K=~ S[(x=x)"s"]-3. (3)
Figure 4 provides an example of distributions with vari-
ous degrees of kurtosis. In a sparse code, any given input can
be described by only a subset of cells, but that subset
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changes from input to input. Since only a small number of
vectors describe any given image, any particular vector
should have a high probability of no activity (when other
vectors describe the image) and a higher probability of a
large response (when the vector is part of the family of vec-
tors describing the image). Thus, a sparse code should have
response distributions with high kurtosis.

Figure 4 shows non-Gaussian distributions in the direc-
tion of increasing kurtosis.

As we move to higher dimensions (e.g.. images with a
larger number of pixels), we might consider the case where
only one basis vector is active at a time (e.g., vector 1 or
vector 2 or vector 3 ..):

axy; axy; axz; ax4.... (4)

In this case, each image can be described by a single vector,
and the number of images equals the number of vectors.
However, this is a rather extreme case and is certainly an
unreasonable description of most data sets, especially natural
SCONeS.

When we go to higher dimensions, there exist a wide
range of possible shapes that allow sparse coding. QOverall.
the shape describing the probability distribution of natural
scenes must be such that any location can be described by a
subset of vectors, but the shape requires the full set of vec-
tors to describe the entire population of images (i.e.. the
shape vequires the full dimensionality of the space)

WY ; . s
Image= }_, aV;. where n<m. (5}
f

where m is the number of dimensions required to represent
all images in the population (e.g., all natural scenes).

For example, with a three-pixel image where only two
pixcls are non-zero at a time, it is possible to have:

axy+bxy; axy+bxy; axy+bxg. (6)

This state-space consists of three orthogonal planes. By
choosing vectors aligned with the planes (e.g., x|, x5, x3), it
is possible to have a code in which only two vectors are
non-zero for any input. Of course, for high dimensional data
like natural scenes, these low-dimensional examples are too
simplistic, and more interesting geometries (e.g., conic sur-
faces) have been proposed.” The basic proposal is that there
exist directions in the state-space (i.¢., features) that arec more
probable than others. And the direction of this higher density
region is not found by looking at the pairwise correlations in
the image. The wavelet transform does not reduce the num-
ber of dimensions needed to code the populations of natural
scenes. It reduces only the number of dimensions needed to
code a particular instance of a natural scenc.

it is proposed that the signature of a sparse code is found
in the kurtosis of the response distribution. A high kurtosis
signifies that a large proportion of the cells is inactive (low
variance), with a small proportion of the cells describing the
contents of the image (high variance). However, an effective
sparse code is not determined solely by the data or solely by
the vectors but by the relation between the data and the vec-
tors.
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SPARSE STRUCTURE IN NATURAL SCENES

Is the visual-system code optimally sparse in response to
natural scenes? First, it should be noted that we are modeling
the visual system with linear codes. Real visual neurons have
a number of important nonlinearities that include a threshold
{l.e., the output cannot go below a particular value: the cell
cannot go below a zero firing rate). Several studies suggest
that cells with properties similar to those in the mammalian
visual cortex will show high kurtosis in response to natural
scenes. In Field,” visual codes with a range of different band-
widths were studied to determine how populations of cells
would respond when presented with natural sceres. It was
found that, when the parameters of the visual code matched
the properties of simple cells in the mammalian visual cor-
tex, a small proportion of cells could describe a high propor-
tion of the variance in a given image. When the parameters
of the code differcd from the those of the mammalian visual
system, the response histograms for any given image were
more equally distributed. The published response histograms
by both Zetzehe® and Daugman®® also suggest that codes
based on the properties of the mamumalian visual system will
show positive kurtosis in response to natural scenes. Burt
and Adelson® noted that the histograms of their ““Laplacian
pyramids™ showed a concentration near zero when presented
with their images and suggested that this property could be
used for an cfficient coding strategy.

Field™ demonstrated that the bandwidths of cortical
cells were well matched to the degree of phase alignment
across scale in natural scenes. Because edges are rarely very
straight in natural scenes, the orientation and position of any
given edge will typically shift in position and orientation
across scale (i.c., across spatial frequency). In natural scencs,
the degree of predictability is around the 1- to 2-octave
range, which is why cortical neurons have bandwidths in the
I-to 2-octave range. This is also the reason that this wavelet-
ike code is sparse when presented with natural scenes.
Field” looked at the kurtosis of the histograms of various
wavelet codes in the presence of natural scenes, and found
that the kurtosis (sparseness) peaked when the wavelet trans-
forms used bandwidths in this range of 1 to 2 octaves.

However, recently more direct tests have been devel-
oped. If the wavelet-like code used by the visual system is
near to optimal in its sparse response to natural scenes, a
gradient-descent algorithm like a neural network, which at-
tempts to optimize this response, should develop receptive
fields that are wavelet-like. The following work explores this
idea.

NEURAL NETWORKS AND INDEPENDENT CODING

There is no known analytic solution for finding the most
independent solution for a complex data set like natural
scenes. However, recently a number of studies using neural
networks have attempted to find relatively independent solu-
tions using gradient-descent techniques.®*** Some of these
studies describe their approach as independent components
analysis (ICA). This author believes that such a description
is a poor use of the term, since most complex data sets are
not likely to have independent components, and the current
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FIG. 5. Results of training of a neural network to construct a sparse code.

techniques search only for specific forms of independence.
For example, in some of these studies, there is an assumption
that the most independent solution must necessarily have
vectors that are completely decorrelated. By forcing this par-
ticular form of redundancy, one is limited to solutions that
are orthogonal in the whitened space (once the space is
sphered).

Olshausen and Field®” describe networks that search for
one particular form of independence (sparse codes) by
scarching for a non-Gaussian response histogram. There are
two competing components of the network. One compoenent
attempts W reconstruct the input with the available vectors
and produces small modifications in the vectors to minimize
the crror in the reconstruction. A second component imposcs
a cost function that attempts to push the shape of the histo-
gram away from Gaussian towards higher kurtosis. The main
point to note regarding the cost function is that it is nonlin-
car, with the gradient of the slope changing with the response
magnitude. What this does is to reduce the magnitude of the
low-magnitude vectors more than it reduces the magnitude
of the high-magnitude ones. Overall, the network attempts to
find a method of reconstructing any given input with a few
high-magnitude vectors—although the vectors involved in
the reconstruction are allowed to change from input to input.
An example of the results of the network are shown in Fig.
5.7 It should also be noted that this particular network allows
non-orthogonal solutions by allowing inhibition of the output
vectors. With this particular nonlinearity, it also turns out
that the code can be more sparse if one allows an overcom-
plete basis set (more vectors than dimensions/pixels in the
data). Similar results have been obtained by other studies.*
Those of Bell and Sejnowski* restrict the search to linear,
orthogonal solutions in the whitened (uncorrelated) space.
Although these is some debate as to whether such a solution
is more or less independent than the results of Olshausen and
Field, the results are globally similar, producing localized
oriented vectors.

Figure 5 shows results from Olshausen and Field® that
used a neural network to search for a sparse representation of
natural scenes. Each template represents one vector of the
population.

18.9
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The results shown in Fig. 5 have a number of similaritics
to the wavelet-like transforms found in the mammalian pri-
mary visual cortex. The results suggest that a possible reason
for this transform by the visual system is that it reduces
statistical dependencies and allows the firing of any particu-
lar cell to provide maximal information about the image.

One of the criticisms of this approach is that, for a bio-
logical system, a sparse code has a serious disadvantage. If a
given cell is providing maximal information about a particu-
lar feature and is not shared with other cells, then what hap-
pens should that cell die? This is actually one of the advan-
tages to the locally competitive overcomplete codes
described by Olshausen and Field.? The output is quite
sparse, but the loss of any given cell will not result in a loss
of the information provided by that cell. However. with a
1:1, critically sampled orthogonal wavelet, it would indeed
be a serious problem if one of the basis vectors was lost.

A second criticism of this approach is that such networks
are not biologically plausible. Most of the networks dis-
cussed above rely on some measure of the response magni-
tudes (i.e., the histogram) of all the cells (vectors) in the
code. These sorts of global measures would be quite difficult
to calculate with known physiology. Secondly, these net-
works typically attempt to reconstruct the input, and use the
error in the reconstruction to modify the weights of the net-
work. Again, this error is a global measure. and even though
the network might be able to calculate the error locally, plau-
sibility is in question.

NONLINEAR DECORRELATION

As noted earlier, it is possible to calculate the principal
components with a Hebbian network that can be made bio-
logically plausible. Unfortunately, if the network is linear,
the networks are sensitive to only pairwise correlations and
do not produce wavelet-like receptive ficlds unless the rela-
tive sizes and positions of the fields are directly imposed.
However, the addition of nonlinear weights can allow the
network to become sensitive to structure beyond the pairwise
correlations.”** Foldiak demonstrated with relatively re-
stricted stimuli that a combination of Hebbian and anti-
Hebbian can leam a sparse code.”!

Can a biologically plausible network produce a wavelet-
like code similar to the results shown above? Field and
Millman®® have found that a network with Hebbian and anti-
Hebbian learning rules with similarities to that of Foldiak™'
can produce results similar to Olshausen and Field® when the
correct threshold is applied to the output. The method of
learning is relatively straightforward. For any given stimulus
{a patch of a natural scene), the outputs of all the vectors are
calculated as the product of each vector with the image
patch. A nonlinear threshold is then imposed on each of the
vectors, and the leaming algorithm is applied only to those
vectors which exceed the threshold value. In the learning
algorithm, each vector above this threshold is compared with
every other vector above threshold. For every pair, the vector
with the larger output becomes more like the input (Hebbian
learning) and the vector with the smaller output becomes less
like the input (anti-Hebbian learning). The results are com-
parable to those shown in Fig. 5. ’

D. J. Field 794




FIG. 6. Example of state-space of sparse daa,

Why can this network learn sparse codes? Figure 6 dem-
onstrates what the imposition of a threshold does in the pres-
ence of sparse data like that shown carlier. There will be no
correlations in the original data. so that the principal axes
will not describe the axes of the data. However, by using a
threshold to break up the quadrants of the data, the correla-
tions can now provide the sparse axes. However, one should
note that the two-dimensional data now require four dimen-
sions. If the vectors are limited to positive values, as shown
in this case, one needs twice the number of vectors to cover
the full dimensionality of the space. Increasing the threshold
to higher levels allows the network to scarch for nonerthogo-
nal solutions. It should be noted that these networks arc
searching for the high-density regions of the state-space. In
this two-dimensional example. the high density is treated as
a spike, but, as noted carlicr, it is probably more likely that
we are dealing with high-dimensional surfaces, given that the
relative positions of features are smoothly continuous across
the image. Nonetheless, since we can not assume that the
structure of these sparse features is orthogonal, networks that
allow non-orthogonal selutions arc likely to find more efB-
cient solutions.

Figure 6 on the feft shows an example of the state-space
of data (x,) that are sparse and have no correlations and
therefore no principal components. However, when the data
are split into quadrants by using vectors that allow only non-
zero values (x,—x,y.~v), the resultant data are correlated.
Networks with Hebbian and anti-learning rules can now
learn the axes of these data.

OVERVIEW

This paper explored the possible reasons that the mam-
malian visual system might cvolve a wavelet-like code for
representing the patural environment. It was argued that this
particular wavelet representation is extremely well matched
to the statistics of our natural visual environment. It is argued
that in general wavelet codes arc effective because they
match the localized, oriented, band-limited structure that ex-
ists in most natural data. Although the pairwise correlations
revealed by the power spectrum do provide some insights
into the properties of the visual system’s wavelet code, it is
the sparse localized structure carried by the phase spectrum
that provides the main insights into the properties of the
wavelet. The results of the code are that activity of any par-
ticular cell will be relatively independent of the activity of
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other cells. This allows the system to maximize the amount
of information coded by any particular cell (since the infor-
mation is not shared among cells). The wavelet code thus
becomes an excellent first step in extracting information
about the world.
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