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ABSTRACT

Why does the mammalian visual system represent information as it does? If we assume that visual systems have

evolved to cope witi the natural environment then we might expect the coding properties of the visual system to be related

to the statistical structure of our environment. Indeed, images of the natunl environment do not have random statistics.

The first-order statistics (e.g., distriburion of pixel values) and second-order statislics (e.9., power specfa) of natural

images have been discussed previously and they bear important relations to visual coding. Statistics higher than second-

order are difficult to measure but provide crucial information about the image. For example, it can be shown that the lines

and erlges found in natural images are a function of these higher-order statistics. In this paper, these higher-order statistics

will be discussed in relation to the coding properties of the mammalian visual system. It is suggested that the spatial
parameters of the cortical 'filters' (e.g., bandwidths of simple and complex cells) are closely related to these higher-order

statistics. In paflicular, it will be shown that the spadal nonlinearities shown by cortical cornplex cells provide the early

visual system with the information required to learn about these statistics.

1, INTRODUCTION

The precise function of cells in the mammalian visual cortex have puzzled researchers since they were first

mapped out by Hubel and Wiesell in 1962. Theories as to why these cells behave as they do have varied from edge and bar

detection to Fourier analysis. More recently, it has been suggested that insight into the behaviour of cells in the

mammalian visual pathway may be gained by a better understanding of the statistics of tle visual environment2'3. This line

of approach will be continued in this paper. We will consider a particular property of natural images, and how this property

relates to the behaviour of cortical cells. In particular, we wish to emphasize a type of cell described as 'complex'l'4.

Although such cells are suggested to represent as much as half of primary visual cortexs, no widely accepted theory of

their function is available. Complex cells show a paflicular type of spatial nonlinearity which distinguishes them from the

more linear and more widely studied 'simple' cells.

There are two main poins to this paper. First, natural images show a particular form of redundancy which does
not show up in measures of second-order statistics. This redundancy results in local features like edges ard lines- In the
frequency domain, an edge or bar can be described as a local correlation in phase: at the location of the edge, the Fouder
components in the same phase. However, when the image contains a large number of edges and lines at different positions,

the conelation between global Fourier coefficients is lost. There may still be redundancy, but it is now in the form of a
higher-order statistic. It might loosely be described as a redundancy across different scales of the irnage; the informal.ion
present. in different frequency bands is not independent.

In the second pafl of this paper, a visual model will be described which represents images with 'filters' that share
many properties of cortical receptive fields. The most imporfant property that will be investigated will be the spatial non-
linearity shown by cortical complex cells. By manipulating the bandwidths in this model, we will altemPt io get a better
idea of why cortical cells have their particular parameters and how these parameters relate to the statistics described above.

l.l The statistics ofnatural imaqes

Randomly select€d images form the natural world do not have random statistics. Such images do not fit a
description ofrandomly generated pixels. Many of the regularities of natural images are best descdbed in terms of "nth-

order" statistics. For example, first-order siatistics refur to the probability distdbutions of the values of each of the pixels
(i.e., the luminances at different points). If we assume that all pixels in an image represent samples ftom the same
disrribution, then it is possible to pool the pixels from a single image to get an estimate of first order statistics.
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Second order statistics refer to tie relations between pairs of pixels. The autocorelation function, for example, is

a measure of the correlations between pixsls as a function of the distance between pixels. The power spectrum is also a

measure of second order statistics (it is the Fourier transform of the autocorrelation function) and therefore provides an

alternative measure. Fi$t and second-order statistics provide important information about an image and provide important

Figure 1. Two images with the same power specftum..

However, tiere are other consistent properties of natural images other than that provided by first and second-order
statistics. Figure la shows a natural scene (Professor F.W. Campbell). Figure 1b shows an image with the same power
spectrum. This figure was created by randomizing the phases of the Fourier coefficients of the odginal. Thus the two
images have tlle same correlational structure (second-order statistics). However, these two images are clearly different.
One of the important differences is the lack of any clear edges and lines in the image when the phases are randomized. The
presence of these edges and lines cannot be measured in terms of second order statistics. To understand the differences
between these two images, we must consider higher-order statistics.

1.2 Stationarv statistics and local €nergy.

The general assumption that will be made in this section is that the statistics of natural scenes are 'stationary'. This
means that if we consider a very large collection of images, the statistics at one position are no different than any other.
For example, if vertical edges tended io occur only in the top half of all the images then the statistics would t91 be
stationary. If the statistics of natural scenes are siationary then it can be shown that the amplitudes of all the real and
imaginary coefficients (sines and cosines) will be unconelated. If all positions of an image have the same shtistics then all
phases of any particular frequency are equally likely. Thus, the corelation of any two frequencies (frequency n and m) can
be determined by integrating the product of fte amplitudes at each position. The correladon is proportional to the sum of
the products, thus:

I
r = k Ja ernx ermx dx (1)

= *J.ei(n+m)x dx

clues about visual coding. Second-order statistics of naNtal scenes show rather consistent behaviour3 (i.e., the power

spectrum falls off as a function of frequency ($ by a factor of roughly l#2). And such statistics are crucial to understanding
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= 6 1 si(n+n)2n- 1 174r*mi n and m must be integers for the discrete Fourier transform, thus (3)

"i(n+m)2r = I and therefore:

r = 0

(4)

(5)

Thus if all phases are equally likely then the sines and cosines of all the frequencies will be uncorrelated.
However, the fact $at the two frequencies are uncorreliated does not mean that the coefficients arc independent. The
problem can be reduced to two vectors. Consider the two vectors shown in Figure 2, representing the complex amplitude at
two frsquenciss. Let us assume that the two v&tors are perfectly corelated in length while their direction (0) is random.

Figure 2. Two-dimensional veclors
with the same length (a=b) but
with uncorrelated projections

Under such conditions, the following projections will all be uncorrelated with one another:

xr = a cos(Or) Yr = a ' sin(0r) xz = b cos(02) yz=b'sin(0) (6)

In other words, the second-order statistics do not provide information that the two-dimensional vectors are
redundant in any way. One might say lhat the information is provided by a founh-order statistic since the fourth dimcnsion
can be predicted with knowledge of the other three. However, it is possible to convsrt this information into a second-order
statistic by using a non-linear transformation. The transform into polar coordinates where z = (xz + y21ll2 is the obvious
choice. Under such a transformation, one would discover that zluLdzzue conelaled.

A similar process can be applied to two-dimensional spatial filters.3'6J Consider an image filtered through a linear
filter selective !o a limited band of frequencies and orieniations. An example is shown in Figure 3. Figure 3a shows the
original image. Figure 3b shows the result of the convolving the image with a linear filter which produces no phase shift in
the spectrum (an even-symmetric filter). Figure 3c is dre result of convolving the image with a similar filter ftat shifts the
phase of each coefficient by 90o. These two filters are orthogonal and are described as 'in quadrature'. As wi$ the vector
above, the vector amplitude at each point in space can be computed as the vector sum of these two orthogonal vecton. The
result is shown in Figure 3b. Figure 4 shows the same process when the filter involves a different band of frequencies. The
main point is that the outputs of linear filters like those of Figure 3b, 3c, 4b and 4c will be uncorrelated independent of the
statistics of the original image. However, the corelations between the vector amplitudes shown in Figures 3d and 4d
(response envelope) will provide important informdtion about the redundancy. of the original image.

1.3 Cornnlex cells

This similarities between this response envelope and behavior of "complex" cells have previously been noted3J.
Like the functions shown above, such cells are sensiaive to a limited band of orientations and frequencies in a local region
of space. Within this region such cells show a spatial non-linearity which appears to be quite similar to the function
described above. Furthermore, work of Pollen and RonneF has shown that adjacent simple cells in the cortex may differ
by the 90o requircd to be quadrature pairs. It might therefore be possible to pmduce a cell ghowing many of the properties
described above with some form of non-linear sum of adjacent simple cells. But this does not tell us why a visual sysiem
would require such cells. With such cells representing as much as half of primary visual cortexs, it seems likely that they
play an important role in visual coding. In the following sections we will suggest one possible account.
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Figure 3. Process for producing the response envelope (local energy). Images series shows the original image followed by
even and odd-symmetric channels. The final image shows the response envelope.

Figure 4. Same as Figure 3 but the filter is selective to a higher band of frequencies.

2. THE VISUAL MODEL

In the next section we will be comparing the corelations between model neurons. To do this, we use a code which
attempts to model many of the ploperties of the visual cortex. However, it is by no means a complete model of the visual
cortex. Rather, it is a method of representing information in an image which will allow us to explore various parameters of
the visual system as well as to indirectly test various properties of images. The general form of the model has been
developed by a number of previous investigatorsg,lo and discussed in greater detail in a previous paper of the author3. The
main features are outlined below. Two terms must be defined. A sensor refers to a single filter localized in space and
representing a single hypothetical cell. The term channel refers to the spatial array of sensors tuned to the same
frequencies and orientations.

1) In the frequency domain, the distance between neighbouring channels is determined by the spatial frequency bandwidth,
which also determines the width of the individual senson and hence the distance between neighbouring sensors in space.
2) In the frequency domain, the disiance between neighbouring orientation channels is determined by the odentation
bandwidth, which also determines the length of rhe individual sensors and hence the spacing along the length of the
sensors,
3) Spatial frequency bandwidths are constant in octaves, and orientation bandwidths are constant in degrees for all the
sensors of a given code. However, there is freedom to change these bandwidths for each code.
4) At each position, there are two orthogonal sensors with phase relations in quadrature. The local energy (i.e., the
hypothetical complex cell) is represented as the vector sum of these two sensors.
5) The total number of sensors is independent of the particular choice of spatial frequency or orientation bandwidth (i.e.,
the image consisting of 65,536 pixels is represented by 65,536 sensors).

i
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The particular funcdon which will be used is similar to the Gabor representation but differs in that the frequency

,".pon." i. t6g normal. The merits of this function have been discussed previously. For a vertically oriented sensor like

thai shown in Figure 7, the response is described by the function:

c(f,o) = expc0n(ffd2l2&) * e^p(-(O-Odzlzp2)

The sampling distance between different sensors is the same as the sampling distance between different channels'

For all cocles desiribed in this paper, the sampling distance corresponded to a distance of:

I
l1= 6 + (/n)ttz

(7)

(8)

The sampling disrance between two neighbouring channels was lelated to the bandwidth of the channels by the

same factor. Figure i provides three examples of how this factor related to channels with three bandwidths' At each

position, t*o o.ihogonal phase relations weri represented (i.e., an even and an odd-symmetric sensor)' The response of the
'complex 

celt (locaienergy) was simply the vector sum of tiese two units. Further discussion of this model are provided in

an earlier paper3.

I

Figure 5. An example of the vertically oriented sensols (even-symmetric) in a code where the frequency bandwidth is 1

oiave. For the saki of clarity, the sampling distance between the sensors was increased by a factor of roughly 2'

3 METHODS OF ESTIMATING CORRELATIONS

A model of this type allows us to determine correlations between neighbouring sensors in space as well as

correlations between ditlelent channels (i.e., different frequency bands). FoI each bandwidth, the estimarcs of the

conelations in frequency involved four steps:

(1) The image was filtered by two channels (equation 1) separated by the distances described in equation 2 and

demonsfiated in Figures 3 and 4.
(2) The complex amplitude was determined as described above'

i:i Conetatlon uet*een the two complex amplitudes was determined for all the cenFal region (the edges of the image will

produce spurious correlations).

i+) Repeat steps (t) - (3) for all neighbouring channels.

The estimates of correlation in space uses a similar procedure:

(1) The image was filtered by a single channel (equation 1)'

(2) The complex amplitude was determined as described above'

i3! Co'etation betwien the complex channel and a disnlaced version of the same channel was determined. The extent of

i" di.plu""rn"nt was a function of the size of tie sensors in that particular channel (ie., the distance corresponds to

distance to the next sensor in that channel - as in Figure 5)'
(4) Repeat steps (1) - (3) for all neighbouring channels.
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4 RESULTS

Figue 6 shows the results for the conelation between neighbouring channels for the image in Figure 1. When the
channels are narrow-band and the spacing between neighbouring channels is relatively small, the correlations between
channels is large. As the bandwidth of the channels and the spacing between channels is increased, the correlation drops.
This implies that for the image in Figure 1, the co[elations extend across different frequencies. However, the conelation is
not complete and tie farther away in frequency the lower the correlation.

Figure 6. Correlations
between neighbouring
channels.

Figue 7 shows these results along with the correlations between neighbouring sensors in space: With narrow-band
channels, the sensors and the spacing between sensors is relatively large. It may not seem surprising that the corelations in
space are relatively low under such conditions. As the bandwidths increase and the spacing between sensors decrease, the
correlations increase. Thus, these results suggest a trade-off between the corelations in space and frequency.

E A
o.5 1,O 1,5 2.O 25 3.O

Bandwidth (octaves)

Figure 7. This figure shows the conelations between neighbouring sensors of the code. In all cases, the sampling distance
was proportional to the sensor size which is inversely proponional to channel size.

Figure 8 shows the results for four other images. The trade-off seems to be a rather consistent feature. However,
what is most interesting is that the region of the trade-off are roughly in the range of cortical cell bandwidths which cover
the range of 1-2 octaves. The consistency in the results may lead one to question whether rhe radeoff is simply a function
of the code and not the images. It is certainly true that correlations in space and frequency must trade off to some extent
but the point where they cross is indeed a function of the conelational structure of the images. To demonstrare this point,
the image in Figure lb was analysed. In that image, the phases of the Fourier coefficients were intentionally randomized.
In this image one would not expect any high correlations between channels. The results are shown in Figure 9. In these
dah, one can see that the spatial correlations remain unchanged (because the power spectrum was unchanged), but the
frequency correlations were removed (the residual conelation are due to the fact that the two functions overlap in
frequency to some extent).
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Figure 8. Correlations for four images from a natural enviionment (e.g., fees, rocks, etc.)
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Figure 9. Conelations for the
image shown in Figure lb. This
image has random phases which is
reflected in the results which show
no significant correlations in
frequency.
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5 DISCIISSION

As stated earlier, there are two parts to this paper. In the first section, two type of redundancy were discussed. The
first is represented by correlaiions across space and is measured in terms of second order statistics like the aub-correlation
function and power specEum. The second type of redundancy is rarely considered in discussions of natural scenes. This
redundancy is between different scales of the image (i.e., different frequency bands). This type of redundancy is nor
second-order and therefore does not show up in corelations. However, it was shown that a particular nonJinear transform
is capable of converting these higher-order statistics to second-order reladons between sensors and can then be measured in
terms of conelation. A model was described which allowed an image to be represented in terms of linear arays of
lheoretical cells or 'sensors'that are selective to local bands of different frequencies and orientadons. From these linear'sensors', it was shown how one could obtain an estimate of the local energy (a measure which shows interestins
similarities to the behaviour of conical 'complex' cells).

In the second section, we investigated the relations between a model of visual coding and these two forms of
redundancy. The results demonstrate that both of these two forms of redundancy are present in natural scenes. Different
codes, appear to promote different amounts of these two iypes of redundancy. If one represents natural scenes with narrow
bandwidth functions then there will be high redundancy between the neighbouring channels. If one represents natural
scenes with broad bandwidth function then there will be high corelations in space. Any code which attempts to maximize
the independence of the units of the code (i.e., the sensors or cells in the case of the visual system) must take into account
both types of redundancy.

o.o
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Estimates of the bandwidths of mammalian simple and complex cells are usually in the range of 1 to 1.5 octaves.

Thus, the bandwidths of cortical cells are roughly aligned with the point where the two functions cross5,ll. This sugges$
that the bandwidths of cortical cells represent a balance between space and frequency producing a state where no

neighbour is highly redundant. This may have a number of advantageous effects. In a previous paper by the auttrorl, it was

shown that codes which represented images with bandwidths in the range of I to 2 octaves may allow natural scenes to be
rcpresented with only a subset of the total available number of cells and can also produce a high signal to noise level in

those cells.

What does this say about the function of complex cells? In this paper, the spatial nonJinearity was used as a tool

to demonstrate the redundancy of natural images. But why would half of the cells in primary visual cortex show this kind

of spatial nonJinearity? One possibility is that the visual co$ex can make use of algorithms 'which perform some form of

de-correlation to increase the indepence of the cells. Recent work with neural networks has shown that such decorrelation

is easily possiblel2 . Thus by converting these higher-order relations to second-order relations, visual cells may use de-
correlation to adapt the visual syst€m to the statistics of the environment. By this line of ftinking, complex cells are
involved with adaplation and development. However, tlis account does not explain the bandwidths of tbe more linear
simple cells. Without the spatial nonJinearity, only spatial correlations would be apparent. Thus, with narrow-band

channels correlations would appear to minimized. To explain the bandwidths of simple cells, a model involving feedback
from complex cells onto simple cells would be required.

Is this'adaptation theory' sufficient to account for why our visual cortex contains so many complex cells? The
answer is probably ho'. There may well be other uses for cells which measure local energy. In this paper, the only
intention is to point out the relations betwe€n the behaviour of these cortical cells and the statistics of the environment.
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