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Abstract The processing of spatial patterns by the mammalian vi-
sual system shows a number of similarities to the ‘wavelet transforms’
which have recently attracted considerable interest outside of the study
of sensory systems. At the level of the primary visual cortex, these vi-
sual systems consist of arrays of neurons selective to local regions of
space, spatial frequency and orientation. The spatial frequency band-
widths of these neurons increase with frequency resulting in a set of
approximately self-similar “receptive fields”. In this paper, we look at
the question of why this strategy of representing the visual environment
would evolve. The question is approached by looking at the statistical
structure of natural scenes and observing how this structure relates to
the visual system’s representation of spatial patterns. It is proposed
that natural scenes are approximately scale invariant with regards to
both their power spectra and their phase spectra. Principally because
of the phase spectra, wavelet-like transforms are capable of producing
a sparse, informative representation of these images. It is suggested
that self-similar codes like the wavelet are effective for so many natural
phenomena because such phenomena show similar structures to those
found in these natural scenes.

1 Introduction

For the last two decades, many of the researchers investigating mammalian
visual processing have been developing transforms derived from the prop-
erties of the mammalian visual system. Following from Gabor’s original
notion of time-frequency representations (Gabor, 1946), these models have
proved to be an effective means of exploring how spatial information is rep-
resented and processed by the visual system. Many of these transforms are
of a general class referred to as self-similar (e.g., Watson, 1983; Field, 1987;
Daugman, 1988). The basis functions of these self-similar codes consist of
arrays of localized and band-pass basis functions which only vary by a di-
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lation, a translation or a rotation. However, these self-similar transforms
have found applications in a wide range of image coding situations includ-
ing compact coding (Watson, 1987; Daugman, 1988; Adelson, Simoncelli &
Freeman, 1991 ), identification systems (Daugman, 1991), texture segrega-
tion (Bovik, Clark & Geisler, 1990) and methods for efficiently transmitting
the time-varying chromatic signal required for HDTV (Watson, 1990; Wat-
son, 1991).

Although much of the background for this work was derived from basic
ideas in information theory and image compression, much of our current
knowledge of these two-dimensional self-similar codes comes directly from
work directed towards an understanding of how the visual system processes
spatial information. It is this historical background which provides the
foundations for many of the ideas discussed in this paper (Kulikowski,
Marcelja & Bishop, 1982; Sakitt & Barlow, 1982; Watson, 1983; Daugman,
1985).

In the next sections, we will discuss some of the spatial response prop-
erties of cells in the mammalian visual cortex. The transforms that have
been used to model the mammalian visual system have come in a vari-
ety of forms and many of these would now come under the heading of
“wavelet transforms”. Basis functions have ranged from Gaussian deriva-
tives (Young, 1987) to functions derived from hexagonal latices (Watson &
Ahumada, 1989). One of the more popular transforms was derived from
the Gaussian modulated sinusoid (i.e., the “Gabor functions” -equations 1
and 2) and we will return to this code in the next section. Unfortunately,
the basis functions of such transforms are not orthogonal making it difficult
to invert and difficult to use in modelling.

To make the modelling and inversion easier, two approaches have been
developed. One approach is to derive codes which share many of the proper-
ties of the visual system but which use orthogonal basis sets (e.g., Adelson,
Simoncelli & Hingorani, 1987; Watson and Ahumada, 1989; Simoncelli &
Adelson, 1990; Adelson et al,, 1991). A second approach developed by
Daugman (1988) uses a two-layered ‘neural network’ to find the coeffi-
cients required to invert the code. However, there is little evidence that
the mammalian visual system uses either technique. Furthermore, there
is little reason to expect that the transform employed by the visual sys-
tem would need to be inverted. Nonetheless, these techniques have been
extremely useful in modelling and image analysis.

The developments in “Wavelet theory” (e.g., Combes et al., 1989; Meyer
and Paul, 1991) have extended our knowledge of self-similar representations
and have extended our understanding of the limitations and capabilities of
such transforms. They have shown clearly that the mathematics underlying
these transforms have applications to a wide range of phenomena outside
of image representation. This volume provides an important insight into
the variety of applications we are likely to see in the next few years.
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Although these transforms are finding a wider and wider range of ap-
plications, a number of important questions remain unanswered. Most
important: Why are these transforms so effective in representing natu-
ral phenomena? What aspects of natural phenomena make them useful?
What types of phenomena are not well described by these self-similar trans-
forms? When do they perform poorly? Is there an optimal transform for
every class of data? If so, then how does one find it?

In this paper, we use the mammalian visual system as a model and
look at the relationship between this transform and statistical properties
of the visual environment. Following from previous work (Field, 1987,
Field, 1989), it will be suggested that for the mammalian visual system,
the particular transform employed by the visual system conforms to the
particular self-similar structures found in natural scenes. The visual system
is efficient because it is well matched to the statistical redundancy of the
visual environment.

The self-similar structure of these scenes will be described using two
different measures. The first is the power spectrum and the related auto-
correlation function. The second is a measure of the local phase structure.
By understanding both of these structures but mostly by understanding
how the “local phase spectrum” is aligned across neighbouring frequency
bands, we hope to gain a better insight into the goal of coding by the
mammalian visual system.

1.1 The mammalian visual system

Although there are number of differences between the visual systems of dif-
ferent mammals, there are a considerable number of similarities, especially
in the representation of spatial information. The most extensively studied
systems are those of the cat and monkey and it is studies on these animals
that provide the basis of much of our knowledge about visual coding.

The acuity of the cat is significantly lower than that of the monkey,
but within the range of sensitivities covered by these visual systems (i.e.,
the spatial frequency range), the methods by which spatial information
is processed follows a number of similar rules. The area that we will be
considering is a region at the back of the brain referred to as primary
visual cortex (Area 17). This area is the principle projection area for
visual information and consists of cells (i.e., neurons) that receive input
from neurons in the eye (via an area called the lateral geniculate nucleus -
LGN). The neurons in the primary visual cortex are selective to a number
of stimulus parameters.

By placing an electrode near one of these neurons and recording small
voltage changes in the neurons membrane, one finds that the neurons will
“respond” to a selective range of stimuli. Hubel and Weisel (1962) were
the first to provide a spatial mapping of the response properties of these
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Figure 1. A two dimensional receptive field is defined by the region
of the visual field that produces either excitation (+) or inhibition (-) in
the activity of the neuron. (a) shows the polarity of the response in a
particular receptive field while the intensity in (b) shows the magnitude of
the response in terms of intensity. (c¢) shows the one dimensional profile of
this receptive field

neurons. By moving small spots and lines in front of the animal, they
found that the neurons would respond when an appropriate stimulus was
presented at particular region in the visual field of the animal. The map
describing the response region of the cell is referred to as the “receptive
field”. Figure 1 shows the type of response that is often obtained from one
of these neurons. If a spot of light is shown within the receptive field, then
the cell will either increase its firing rate (excitation) or decrease its firing
rate (inhibition).

Figure 1a shows the response to a bright spot as a function of position
across the visual field where (4) refers to excitation ( a bright spot increases
the activity of the cell and a dark spot decreases the activity). The (-) refers
to inhibition ( a bright spot decreases the activity of the cell and a dark spot
increases the activity). If we allow intensity to represent the magnitude of
excitation or inhibition we get the profile something like that shown in
Figure 1b. Figure 1c shows a cross section of the centre of this receptive
field. As one can probably guess, this particular cell would respond well
to a vertical line placed at the centre of the receptive field. With diffuse
illumination or a line placed horizontally across the receptive field, the
excitation and inhibition will typically cancel and therefore the cell will
not respond.

Different neurons respond to different positions within the visual field.
Furthermore, at any given position in the visual field, different neurons
have receptive fields oriented at different angles and show a variety of sizes.
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Thus, the entire visual field is covered by receptive fields that vary in size
and orientation. ! Neurons with receptive fields like the one above were de-
scribed by Hubel and Weisel as “simple cells” and were distinguished from
other types of neurons in primary visual cortex referred to as “complex”
and “hyper-complex”. (The principle difference is that these neurons show
a high degree of spatial non-linearity.)

Throughout the 1960s and 70s there was considerable discussion of how
to describe these receptive field profiles and what the function of these
neurons might be. One approach (Campbell, & Robson, 1968) was derived
from linear systems theory. The same cortical neurons described above
were found to be selective to a limited band of orientations and spatial
frequencies (Campbell et al., 1968; Campbell et al. 1969; Blakemore, &
Campbell, 1969) and this led to the notion that the visual system was pro-
viding a description similar to that of the Fourier transform. At the time
of this work, such results appeared to contradict the notion that these neu-
rons were selective local features like edges and lines. Indeed, the response
of these neurons to edges and lines led other investigators to suggest that
the analysis was similar to algorithms that extracted information from an
image by performing a more local operation like edge detection (Marr &
Hildreth, 1980).

It was not until 1980 (Marcelja, 1980), that the functions describing
these receptive fields were considered in terms of Gabor’s “theory of com-
munication” (Gabor, 1946). Marcelja noted that the functions proposed
by Gabor to analyze time-varying signals showed a number of interesting
similarities to the receptive fields of cortical neurons.

Marcelja’s suggestion was that the profile described by the line weight-
ing function (Figure 1c) might be well described by a Gaussian modulated

sinusoid:

f(z) = sin(2nkz + 0)e=="/2’ (1.1)

This function, now referred to as a “Gabor function” has served as a
model of cortical neurons by a wide variety of visual scientists. Early tests
of this notion showed that such functions did indeed provide an excellent fit
to the receptive fields of cortical neurons (Webster & DeValois, 1985; Field
& Tolhurst, 1986). Figure 2 provides an idea of the variety of receptive field
profiles that could be described by this method along with results showing
the best fit to a collection of cortical simple cell receptive fields.

Gabor (1947) proposed these functions because they are well localized in
both time and frequency. Daugman (1985) and Watson (1983) generalized

1A neuron in primary visual cortex is typically selective to other parameters as well—
e.g., retinal disparity, temporal frequency and direction of motion. These parameters as
well as the change in the receptive field size in the visual periphery will not be factors
in the models presented here
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Figure 2. The figure shows results for 46 simple cells from Field and
Tolhurst (1986). The receptive field profiles were normalized to the same
size and the best fitting “Gabor function” was determined (equation 1.1).
The lower plot represents the variety of receptive field profiles as a function
of their bandwidth and symmetry. Only half of the plot is represented
because a 180 degree flip in orientation is equivalent to a flip in symmetry
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Gabor’s notion to the two-dimensions of space where the two-dimensional
basis function is described as the produce of a two dimensional Gaussian
and a sinusoid. For example,

f(z)y) = Sin(?ﬂ'kz + 0)6—(1‘2/20?+y2/203) (12)

Although Jones and Palmer (Jones & Palmer, 1987b) found that the
full two-dimensional receptive field profiles were well described by this two-
dimensional “Gabor function”, other studies (Hawken & Parker, 1987) have
found that other types of functions (e.g., sum of Gaussians) may provide
a better fit and may also achieve better localization (Stark and Wilson,
1990). Although some of the differences between these various models
may prove to be important, the differences are not large. All of the basis
functions proposed involve descriptions in terms of oriented functions that
are well localized in both space and frequency. Figure 3 shows results from
two different laboratories showing examples of four 2-D receptive fields
from the cat (a) and the amplitude spectra of various cortical cells in the
macaque (b).

In the next section, we will be discussing transforms which describe the
“average” receptive field properties of cortical cells. However, no single
basis set will be capable of describing all of the receptive field types that
are found in the mammalian visual cortex. As shown in Figures 2 and 3,
there is significant variability in receptive field profiles and their spectra.
For example, the bandwidths of cortical cells average around 1.4 octaves
(equation 3) but bandwidths less than 1.0 or greater than 2.0 octaves are
not uncommon (Tolhurst and Thompson, 1981; DeValois, 1982). It is not
clear whether this variability is important to the visual system or whether
it should be considered as a limitation in design. For the purposes of this
paper, however, we will concentrate only on this average behaviour, not
the variability.

1.2 Transform families

Gabor (1946) described a family of transforms that were capable of rep-
resenting one-dimensional waveforms. These ideas were extended by Ku-
likowski et al. (1982) to include transforms in which the bandwidths in-
creased proportionally to frequency. Figure 5 describes a range of possible
transforms on a one dimensional image. This space of transforms show
bandwidths which vary with frequency according to the equation:

o(k) = Bk~° (1.3)
where B varies from left to right and « varies from top to bottom. These
information diagrams portray a range of techniques of dividing the infor-
mation space consisting of 18 values into functions localized in space (z)
and frequency (k).
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Figure 4. Relations between the two-dimensional spectra and some of
their basis functions. The two ‘rosettes’ represent two different self-similar
codes. For both codes, the bandwidths increase with frequency and the
orientation tuning is constant in degrees. The spatial basis functions shown
below represent the spatial sampling grid for four of the filters from the
code (the distance between functions has been increased for clarity). Each

two-dimensional wavelet is present in both even and odd symmetric forms
as shown in the two lower arrays
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Figure 5. Information diagrams, in line with that originally proposed by
Gabor (1946) and Kullikowski (1982). Each diagram represents a different
method of representing an 18 point, one-dimensional waveform. A Fourier
transform represents the information space with 18 sines and cosines. Each
element in the Fourier code (a sine or cosine) is localized in frequency and
extends in space. The Gabor code represents information with élements
that are localized in both space and frequency. The wavelet code repre-
sents information with basis functions that decrease in size and increase in
bandwidth with increasing frequency. These five represent a small set of an
entire family of such codes described by equation (1.3). All of these codes
are capable of representing the information in a data set without loss
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The right of Figure 5 shows a transform based on a spatially local “pixel
code”. With such a code, the 18 values in space are described in terms of
“pixels” that are localized in space and extend in frequency. Figure 5
also shows that these 18 values can also be represented with 18 Fourier
coefficients that are localized in frequency and extend in space. As Gabor
noted, there are many other ways to represent these 18 values. The middle
column of Figure 5 shows examples of a transform where the functions used
to represent the image are localized in both space and frequency. Following
Gabor, the area represented by any function in this information space is
limited by:

oroy > 1/2 (1.4)

where the functions that achieve this minimum are the “Gabor functions”
described above.?

There exist a large variety of possible transforms that are capable of
producing a complete representation without loss. Equation 1.3 describes
a range of codes other than the five shown here, and there are many others
not well described by equation 1.3. There is nothing about any of the
transforms in Figure 5 which would make them inherently better or worse
than any other. To correctly specify the effectiveness of a particular code,
one must define (1) the goal of the code, (2) the type of data that is
likely to be encountered, and (3) the conditions under which the transform
must function. A Fourier transform, for example, may produce an effective
representation for some types of images (e.g., sinewaves) but may be far
from optimal for other classes of images (e.g., star charts).

All the representations shown in Figure 5 are capable of completely rep-
resenting the information in an 18 value data set. The middle line shows
transforms which have the same bandwidths at all frequencies (&« = 0 in
equation 1.3). However, Kulikowski et al. suggested that the representa-
tion of the visual system followed a code more like that described by the
“wavelet code” shown in Figure 5. In transforms like this, the bandwidths
(ok) increase proportionally to frequency (i.e., @ = 1 in equation 1.3). In
such a code, the basis functions are simply scaled versions of each other
(i.e., self-similar).

1.3 Terminology

Wavelet: We will be using the following terminology to describe these
transforms. Most important, we will use the term “wavelet” to apply to
transforms in which the basis functions are self-similar (i.e., only differ

2Throughout this paper, we use the term o) and o= to refer to the size of the functions
in space and frequency, respectively. The term Ak and Az will refer to the sampling
distance between neighbouring functions in frequency and space.
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by dilations, translations and rotations of a single function). However,
to avoid any offence to the vision community, it must be re-emphasized
that according to this definition, the “wavelet transform” was developed
several years before the important contributions of Grossman, Meyer and
Morlet. For example, besides the work in audition, continuous versions of
the wavelet (continuous in space and frequency) have been used in visual
modelling by Klein and Levi (1985) to help explain hyperacuity thresholds.
And for two-dimensional transforms, there were a number of important
contributions by Daugman, Watson, Adelson and others in the early 1980s
as discussed above.

There appears to be some effort to use the term to apply only to self-
similar transforms in which the basis functions are orthogonal or only to
those with basis functions which integrate to zero (as in the Log-Gabor
transforms (Field, 1987) and Cauchy (Klein and Levi, 1985)), but these
requirements are not accepted by everyone.

Gabor transform: In the vision community, the term “Gabor trans-
form” has been applied to all transforms which have basis functions derived
from a Gaussian modulated sinusoid (equations 1.1 and 1.2). However, in
this paper we will restrict the definition to apply to only those transforms
in which the basis functions have the same spatial extent —o, is constant—
(e.g., see Figure 5) and thus the same bandwidth —o; is constant. This
may seem like an odd definition to those in the vision community, but it is
a definition which appears to be gaining acceptance (e.g., see Farge in this
volume).

Spatial frequency measured in cycles/degree: A receptive field of
a neuron in the visual system typically covers some local region of the visual
field. Its size can be measured in terms of the angular extent (e.g., 2 degrees
of visual angle). That neuron will typically “respond” to a stimulus with
a sinusoidal luminance profile when the the period of the sinusoid matches
the excitatory and inhibitory regions (Figure 1) of the receptive field. The
selectivity of the response is predicted from the Fourier transform of the
receptive field profile. Since the response of the cell is determined from the
angular region covered by the receptive field, researchers have settled on
the term cycles/degree to describe the spatial frequency. For example, in
the monkey, it is common to find cells that are optimally tuned anywhere
from 1/2 to 30 cycles/degree.

Bandwidth measured in octaves: Since much of the work in vision
has its roots in the auditory literature, much of the terminology is in com-
mon. One such term is the measure of bandwidth described in terms of
octaves. Such a measure is quite useful for a self-similar transform since
dilations of a function do not alter the bandwidth when measured in oc-
taves. The spatial-frequency bandwidth is measured as the full-width at
half-height, where the bandwidth in octaves is defined as:
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Boct = Ina(k2/ky) (1.5)

where k; and ks are defined as the lower and upper frequencies defining the
width at half-height. As noted below, the spatial frequency bandwidths of
cortical cells show a fair degree of scatter but appear to average around
1.4 octaves. Although we will treat the visual system as a self-similar code
throughout this paper, it should be noted that there is substantial evidence
that high frequency cells have somewhat narrower bandwidths (in octaves)
at higher spatial frequencies (e.g., Tolhurst and Thompson, 1982). The
ramifications of this finding are not yet clear.

1.4 Two-dimensional transforms

The one-dimensional space-frequency transforms were generalized to two-
dimensions by several investigators ( Watson, 1983; Daugman, 1985; Adel-
son et al., 1987; Murenzi, 1989). Although many of the main points are
described below, the details of the two-dimensional coding schemes used in
this paper can be found in more detail in previous papers by the author
(Field, 1987,1989).

In general, these codes represent images with arrays of basis functions
that are localized in the two-dimensional frequency plane as well as the
two-dimensional image plane. Figure 4 shows an example of the division
of the two-dimensional frequency plane and the corresponding representa-
tion in space for one orientation. Each basis function is thus localized in
the four dimensions of z,y,u,v. In this particular description, the spatial
sampling grid is rectangular. This is useful for the measures we wish to
perform. However, there is no evidence that the mammalian visual system
uses a rectangular grid and indeed, other grids have been proposed (Wat-
son and Ahumada, 1989). However, as long as the sampling distance is
roughly proportional to the size of the receptive fields as discussed below,
the conclusions of this paper remain unaffected.

The division of the information space with these two-dimensional trans-
forms is analogous to the 1-dimensional transforms described in Figure 5.
Unfortunately, one requires a four-dimensional plot to cover the full 2-D
space by 2-D frequency trade-off. If we consider only a single orientation
for the purposes of the display, we may show the space-frequency trade-off
using the representations shown in Figure 6a and b. Figure 6a shows a rep-
resentation where the bandwidths are constant at all frequencies (Gabor).
Figure 6b shows a representation where the bandwidths are proportional
to frequency (wavelet).

As with the one-dimensional codes, the sampling in space and frequency
is proportional to size of the functions in space and frequency. In particular,
for the transforms described in this paper the sampling distance is set to:

Ak =270y (1.6)
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Wavelet

Figure 6. Three-dimensional information diagrams and their cor-
responding basis functions. The information diagrams are actually
four-dimensional (u,v,z,y) but we have limited the diagram to the rep-
resentation of single orientation, to allow a graphical description. The
Gabor code has constant size and constant bandwidths while the Wavelet
has bandwidths which increase with frequency as shown and results in a
set of self-similar basis functions
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Dz =270, (1.7

For a Gaussian or a Gabor function defined by equation 1.1, the relation
between the width in space and frequency is

1
270,

(1.8)

By selecting the sampling schemes like that described above, it is is
possible to produce a family of codes with the same overlap in both space
and frequency and where the extent of the overlap does not depend on the
particular bandwidths selected. In other words, by following the correct
sampling it is possible to produce a family of 1:1 transforms where the
overlap between neighbouring basis functions is the same in both space
and frequency.

With this constraint, both the Wavelet and the Gabor transforms are
complete, in that they represent all the information in the original image,
and they are critically sampled (1 : 1) since this coding scheme represents
each image with a constant number of functions (e.g., 65536) independent
of the parameters that are chosen. However, it must be emphasized that
these two types of transforms represent only a tiny fraction of the possible
set of complete codes.

If the only goal is to represent the original data completely, then it will
not be possible to show any selective advantage for any of the transforms
described above. To understand why the mammalian visual system would
evolve its particular “wavelet-like” strategy, one must know more about the
task that the visual system must face. The answer proposed in this paper
is that the visual environment has a particular structure that allows such
a representation to be efficient for the natural environment. In the next,
section we will consider some of the statistics of natural scenes which appear
to be relevant to our understanding of the mammalian visual system.

Ok =

2 The Statistical Structure of Natural Scenes

In this section, we will be looking at some of the statistical properties of
natural scenes. For many people, this may seem like an odd notion. At
first glance, it may not seem possible to classify something like a “natural
image”. It may seem that the images that are ‘typically’ focused on our
retina must differ so widely from scene to scene that such classification
would be either impossible or meaningless.

However, our visual environment is not at all random. We live in a
highly structured visual world where objects and surfaces reflect light in
ways that are determined by specific physical laws. Such structure limits
the range of images that we are likely to encounter. There exists a degree
of predictability or redundancy in our environment and it is proposed that
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the mammalian visual system has taken advantage of this redundancy to
produce a representation which is efficient at representing these images.

Images: In the next sections, we will be showing that our environment
is not random. The data we will be considering consist of digitized pho-
tographs of the natural environment. They consist of a variety of scenes
some of which are shown in Figure 7. The only photographic restriction
was that the images have no manmade features (buildings, signs etc.) since
these tend to have different statistical structures (e.g., a higher probability
of long straight lines). The images used in this study were taken from the
environment around Ithaca, NewYork. Images were photographed with Ko-
dak XP1 film using a 35mm camera . Photographic negatives were scanned
using a Barneyscan digitizer that provided a resolution of 512x512 pixels
per picture with 256 gray levels. The images were calibrated for luminance
using Munsell swatches allowing the pixel values to have a linear relation to
the image intensities in the original scene. The optics of the camera were
taken into account by determining the response to thin lines and correcting
for the changes produced in the amplitude spectrum (i.e., the modulation
transfer function).

2.1 Scale invariance

There are a number of statistical properties that we might consider when
looking at natural scenes. Any structures that occur with some degree
of predictability may help in understanding why the mammalian visual
system uses the coding scheme described above. However, in this paper we
will focus on the types of structures that would be expected if the statistics
of the environment are scale invariant. ‘

That is, suppose we assume that the global statistics of our images do
not change as we “zoom” into any particular region of the image. As with
most ‘fractals’ we can describe this invariance as:

G(z,y) = a?G(z/a,y/a) (2.1)

and if we force p = 0, which forces the variance (or contrast in our case) to
also be maintained across scale, then

G(z,y) = G(z/a,y/a) (2.2)

What sorts of statistical structures do we expect from this simple re-
striction? In this paper, we will be considering two forms of statistics:
invariance in contrast across scale (reflected in the power spectrum) and
invariance in the local structure (reflected in the phase spectrum). It is
suggested that the constraint of scale invariance produces, (a) several of
specific limitations on the range of possible images that can occur, (b)
produces some accurate predictions of the statistical structures of natural
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Scale Invariance
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Statistics remain constant ———»

Figure 8. For an image to be scale invariant, the statistics of the image
must remain constant as one magnifies any local region of the image. In
this paper, we wish to consider both how the amplitude and phase spectra
scale in natural scenes

scenes, and (c) provides us with a possible explanation of why the mam-
malian visual system would use the self-similar ‘wavelet’ strategy .

Invariance in contrasi over scales

Consider the images shown in Figure 7. Each of these has information at
a variety of scales. In a real scene, if one magnifies any particular region
one is not likely to find an increase or decrease in the amount of contrast
at any scale. In a photograph, the contrast as measured by the variance in
pixel intensities should remain roughly constant independent of the viewing
distance. On average, one should not expect to find either more or less
variance in the image as one magnifies a particular region.

This invariance in “contrast” across scale is best described in terms of
the amplitude or power spectrum of the image. Since the variance of the
two-dimensional image is proportional to the volume under the power spec-
trum (Parseval’s theorem), it is possible to determine the power spectrum
that results in constant contrast at all scales.

Consider an image with an amount of energy E between frequency k
and frequency nk. A magnification will shift the range of frequencies to
the range from ak to ank. The total energy between frequencies £ and nk
is also shifted into the range of ak to ank.

Assume that we have an image in which the energy density at any
frequency is g(k). For a two-dimensional spectrum, the total energy at
frequency (k) summed across all orientations will be:

E(k) = (27k)g(k) (2.3)
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For a band of frequencies to have constant energy at all magnification
requires:

/M(Qn'k)g(k)dk =C (2.4)

where C is a constant. To maintain constant energy at all scales requires
that:

g(k) < 1/k* (2.5)

Assuming that the resolution is proportional to the window size, if the
power spectrum falls off as 1/k? this implies that the two-dimensional image
will have constant variance at all scales. That is, it would be possible to
expand any local region of the image and maintain the same variance.

Previously, it was noted (Field, 1987) that this notion of scale invariance
provides a good description of the amplitude spectra of natural scenes.
The amplitude spectra of six images were shown to fall off as a function
of frequency by a factor of approximately 1/k (the power spectra fall by
1/k2).

Figure 9 shows an image along with a portion of its two dimensional am-
plitude spectrum. When the falloff averaged across orientations is plotted
on log-log coordinates we get plots like that shown in Figure 10a. Figure
10b shows the falloffs for 85 scenes collected from a variety of natural en-
vironments. Although the results are not identical for all these scenes, the
slopes of the amplitude spectra average approximately 1.1 or a power spec-
trum of 1/k2-2. This implies a fractal dimension of 2.9 (almost space-filling)
and are therefore near to scale invariant.3

Such patterns show approximately equal energy in equal octaves. As
previously noted (Field, 1987), this form of redundancy may allow a visual
system to calibrate its gain to match the expected distribution of energy.
However, as we will see in the next section, knowledge of the power spec-
trum is not sufficient to predict that wavelets will be effective codes.

Scale-invariance in the phase spectrum

Although the amplitude spectra represents one property of images that fol-
lows from their scale-invariance, there exists other structure which is more
relevant to the understanding of visual codes. Consider the two images

3Although these images were calibrated for the cameras optics and film non-
linearities, a number of parameters can produce slopes steeper than 1/f. An actual
optical system has limited depth of field which makes it impossible to have all points
in a three-dimensional environment in perfect focus (these images were collected with
a small aperture). Any motion in the scene or camera will also move the spectra to
steeper slopes. Finally, if an image contains significant blank regions (e.g. regions of
sky), then the image will not be scale invariant at all locations, and the slopes will be
steeper.
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Figure 10. Part (a) shows the falloffs for the top four images in Figure 7
(each shifted up for clarity). On these log-log coordinates, the amplitude
spectra have a slope of around -1. Graph (b) shows a histogram of the
slopes for 85 images. The mean slope of the amplitude spectra is -1.1
(power spectra fall as k—2-2)

shown in Figure 11a and b. Each of these images has the same amplitude
spectrum and therefore the same auto-correlation function. The image in
11b was created by filtering white noise to the same amplitude spectrum
as in 1la. This is equivalent to randomizing the phases of the Fourier
coefficients while keeping the amplitudes constant. The two images are
considerably different. The image on the right does not contain any of the
lines or edges shown in the image on the left.

The presence of edges and lines in an image corresponds to a type
redundancy between the different scales of the image which is destroyed
when the phases are randomized. Figure 11 also shows the two images
sliced into low-middle and high frequency bands. An image with random
phases, (Figure 11b) will show no redundancy across scales. However, one
can see that in Figure 1la , there exists a number of structures which
extend across the different frequency bands. Many of the edges found in

the low frequency bands are also found in the medium and high frequency
bands.
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These features exist because some degree of alignment exists between
the phases at different frequencies. However, the problem of identifying
and measuring this alignment is not a simple one. When there exists more
than one location where these broadband features are present, the phases
of the global Fourier coefficients become extremely complex. To detect this
alignment of phases, one must define the relative phases locally in space as
well as locally in spatial frequency.

To understand what we must look for, consider how a simple func-
tion like that shown in the top of Figure 12 will change when the func-
tion is scaled in size (i.e., width). The figure shows examples of four
one-dimensional functions that vary in size and three ways of represent-
ing them. The left of Figure 12 shows the spectra of these four functions.
For functions with constant amplitude, when the width is decreased:

G(z) — G(az) (2.6)

the spectrum of each function will drop in amplitude, shift to higher fre-
quencies and increase in bandwidth.

F(k) — F(k/a)/a (2.7)

The middle of Figure 12 shows a space-frequency plot of these four
functions. The representation demonstrates the trade-off between space
and frequency described earlier with the Gabor transforms.

All of the functions shown in Figure 12 have similarities in their phase
spectra. The Fourier coefficients are all in cosine phase when the spectrum
is defined at the peak of the function. Indeed, in terms of the phase spectra,
a feature like an edge or a line marks locations where the phases are locally
aligned. The middle of Figure 12 can be considered to show the regions
in space-frequency where the alignment occurs. This extent over which
the phases are aligned will be referred in general terms as a local “phase
structure.”

An image which consists of arrays of scaled functions will show a greater
range of alignment at the high frequencies relative to the low frequencies.
A waveform that is invariant over scale requires that the bandwidth of the
phase structures (the frequency window over which the phases are aligned)
be proportional to frequency.

The concept of phase alignment becomes more difficult to define in an
image with a large number of phase structures. Consider a waveform in
which we distribute the functions like that shown in Figure 12 to make a
waveform like that shown in Figure 13a. To make this type of waveform,
one takes a large function g{z) and places it randomly on the waveform
g(z — z,). Then one takes two such functions of half the size g(2(z — z,,)
and adds those to the waveform at random positions. Halve the size again
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Figure 12. Space-frequency demonstration of how localized functions
scale in space and frequency. The graph on the left shows the amplitude
spectra of these four functions and the middle graph provides a represen-
tation in both space and frequency. For each of the functions shown, the
phases are aligned across a local region of space and frequency. By adding
a large number of functions like this, one obtains the graph shown in Figure

13

and add four of these to the waveform. By continuing this process one ends
up with the waveform like that shown at the bottom of 13a.
The waveform is described by the equation:

a 2™
DY @™ (2 — znm)) (2.8)
m=0n-1
where z,,,, is randomly and independently distributed across the waveform.
In Figure 13a:

g(z) = sin(2‘n':r:/tr)e"’2/2”2 (2.9)

For the waveform shown, there were only 9 iterations (a = 9) but the-
oretically one can design a scale invariant image by allowing m to be un-
bounded. A similar waveform will be created by taking a random collection
of basis functions from the wavelet code (e.g., one out of four randomly)
like that shown in Figure 5 and summing them together.
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Such an image will be scale invariant with regards to both the power
spectrum and the phase spectrum. But more important, when such a wave-
form is represented by a wavelet code, the representation will be sparse.
By sparse, we mean that the waveform can be represented by a relatively
small subset of the total set of basis functions (If one out of four basis func-
tions went in to make the waveform, then one out of four will be needed
to represent it). Figure 13a also shows an example of a continuous wavelet
transform of this waveform. One can see that there are a number of ‘inac-
tive’ regions. The wavelet produces a sparse representation. The waveform
is not sparse in space (a small subset of points in space cannot describe
the waveform). It is also not sparse in frequency (a small subset of Fourier
coefficients cannot describe the waveform). Only when represented in both
space and frequency as with the wavelet does this waveform appear sparse.

The waveform in Figure 13b is an image with a similar power spectrum
(k~!) but has a random phase spectrum (pink noise). The waveform in 13a
is sparse when represented by the wavelet, while the waveform in 13b is not
sparse by any representation. In this paper, it is proposed that wavelets
are effective codes when waveforms show this scale-invariant and sparse
distribution of features. Indeed, it has been previously shown (Field, 1987)
that wavelet codes can produce a sparse representation of natural scenes.

Does this imply that natural scenes have scale-invariant phase spectra?
In the next section, a method is described for measuring these structures
in complex images.

3 Measuring Redundancy in Two-dimensional Scenes

In Figures 11a and 13a, one expects to find some redundancy across the dif-
ferent scales. It might seem possible to determine the degree of alignment
by correlating the images in different frequency bands. Unfortunately, the
simple measure of correlation will not provide any meaningful results. Con-
sider two filters that are orthogonal, independent of their relative position
(e.g., selective to different frequency bands).

/fl(:c)fg(:c —zg)dz =0 for all z,. (3.1)

Then the convolution of those two filters with any waveform will also
be orthogonal.

/ dzo / fi(= — z0)g(2)dz / fy—z0edy =0  (32)

Since the correlation is simply a function of the product of the filtered
images, the correlations will always be zero, to the extent that the two filters
are orthogonal. In other words, if one attempts to determine the degree



JySu1 9y3 uo aBewl Sy} Ul PIsSN SUOLIOUNY 3Y) 10] URY) Jomodleu dle syjplampueq
9Y3} UOIYM UI SUOIJOUN) WOI] PIALISP SI JJ3[ Y3 U0 dFewW! Y, '9pod j3[oaeM & ()im sndyno asieds & aonpoid
[[# pue Kousnboyy yduy je juowudife oseyd 1996018 © aavy safewr asay) ‘[ Ul umoys aFewlt ayj dYI[u()
‘({euoISUSWIP-OM] ST UOIOUNJ Yo pUE ,,Z URY) I9YjRl SUODUNY ,,f 1940 SWINS 3Nq (8'Z) uoryenba uro1j paAlIap
a1e sofewn ayy ) e1yoeds aseyd pue eijdads Jamod jurlIRAUL 9[RS Y}IM sofew Jo ss[dwrexs oM, "p1 2Indrg

D.J. Field

178




Scale-invariance and Self-similar ‘Wavelel’ Transforms 179

ﬁ

Data Envelope

G(x) H[G(x)] ‘/G(X)2 + HIGX))’

H
1
e

Figure 15. The correlation between any two frequency bands was de-
termined by means of the ‘envelope’ or complex amplitude of the filtered
response. The figure shows a waveform (a single point) filtered into three
frequency bands. If the correlations had been determined by means of this
filtered output alone, the correlations would not be significant (equation
(3.2)). Correlations between the envelopes (vector sum of the filtered out-
put and its Hilbert transform) provides a measure of the extent to which
different features extend through frequency

of similarity across scale by measuring correlations between the filtered
images like that shown in Figure 11b and 13b, one will obtain a correlation
of 0.

Consider an image of a single point like that shown at the top Figure
15. When the image is filtered into different frequency bands, the resultant
bands will be uncorrelated as long as the filters are orthogonal. To show
that there exists redundancy across the scales requires a different measure.

If we consider that the filtered images represent a vector which is ro-
tating in phase and changing slowly in amplitude, it becomes clear that it
is the amplitude of the vectors that are correlated. One measure of this
complex amplitude is described by the vector sum of the waveform and its
Hilbert transform (Field, 1987; Morrone and Burr, 1988; Bracewell, 1989;
Field, 1989)

E(z) = V/g(z)? + H(g(2))2. (3.3)

The two dimensional analogue is shown in Figure 16. Although the
filtered images will not be correlated, this is not the case for the envelopes
derived from the filtered images. The envelopes of these filtered images
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will be correlated to the extent the phases are aligned at similar locations
in the two frequency bands.

Correlations were determined from the two-dimensional envelopes de-
scribed above. The results we describe will show correlations between fil-
ters across both space and frequency. In both cases, the correlations are
determined at distances that correspond to the filter size in space and fre-
quency. To help understand this, consider the representation shown in
Figure 12. Like in Figures 5 and 6, this representation shows how a two-
dimensional image can be divided into functions that are localized in space
and frequency. As with the representations in Figure 5 and 6, the spacing
between basis functions is a function of the bandwidth. For these codes
the spacing is based on a square grid where:

Azjo, = Akjoy = V2. (3.4)

The particular factor of /27 is not crucial to the results presented in
the next section. What is important for our analysis is that the spacing be
proportional to the bandwidth and that the overlap between neighbours
in space (Az/0,) be equal to the overlap in frequency (Ak/oy). By com-
paring correlations across space and frequency using this sampling scheme,
this representation allows us to compare the relative redundancy in space
and frequency. :

For the results discussed in this paper we will consider only the effect of
the frequency bandwidth on the measured redundancy of the code. Since
we are dealing with two-dimensional functions, it is also possible to discuss
role of orientation tuning as well. However, that is beyond the scope of this
paper. The orientation tuning will not be independently varied. Rather,
the orientation tuning will be linked to the frequency tuning. Thus the
equation of the tuning in frequency for the Gabor code is:

Glky,k,) = e~ (bx=kuo)(bv=ke,))?/207 (3.5)

We will be measuring the redundancy of our natural scenes using both
a “Gabor code” and a “wavelet code.” For the Gabor code, & is constant
for all frequencies.

Gabor ¢ =constant (3.6)

However, for the self-similar ‘wavelet’ code, o is dependent on k. The
basis functions have a similar spectrum but which conforms to the logarith-
mic mapping as shown in Figure 4. As described previously (Field, 1987),
radially the function has the spectrum:

G(k) = e~(n(E/k0))*/2In(o/ko)? (3.7)

and is Gaussian along the orthogonal axis.
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Correlations across space and frequency
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Figure 17. Results when measuring correlations between neighbouring
Gabor filters for 24 natural scenes. The image is represented by arrays of
basis functions that are the same same size in space and the same band-
widths in frequency (e.g., Figure 6a). The ‘distance’ between neighbours in
space is proportional to their size and the ‘distance’ between the neighbours
in frequency is proportional to their bandwidth. With increasing frequency,
neighbours in frequency become more highly correlated while neighbours
in space become less correlated. This would be expected if the structures
in these images become more localized and increase in bandwidth with
increasing frequency

3.1 Correlations with 2D Gabor

In the first set of results, we consider the correlations as a function of fre-
quency. The representation of information in the image will be like that
shown in Figure 6a. The results of these analyses are show in Figure 17.
First, consider the correlations marked “frequency”. This shows the corre-
lations between data filtered at two neighbouring frequency bands (centred
at k and Ak). One can see that at the low frequencies the correlations
in frequency are relatively low while at high frequencies the correlations
are high. The redundancy between frequency bands is higher at the high
frequencies.

The curve labelled “space” shows the correlations between neighbouring
Gabor functions in space. Separated by a distance of Az as described
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Correlations for 1/k pattern with
random phase spectrum (Figure 11b)

Gabor
1.0
0.8
= |
e
= 0.6
=
&
o 0.4
S
0.2
0.0 _m——
0 20 40 60 80

Frequency of filters (cycles/picture)

Figure 18. Results when measuring correlations between neighbouring
Gabor filters for the image shown in Figure 11b. The image has a random
phase spectrum. Since this image has no structures which extend across
space or frequency, the correlations are near 0

above. This measure was determined by shifting the filtered image by a
distance Az (orthogonal to the orientation axis) and cross correlating.

Ci = Corr(Fi(z,y), Fe+ar(z,v)) (3.8)
C. = Corr(Fi(z,y), Fe(z + az,y + ay)) (3.9)

where \/az? + ay? = Az, (3.10)

These results demonstrate that the correlation between neighbouring
filters increases with increasing frequency. This is what would be expected
if the phase alignment is scale invariant. That is, if one begins with a
structure which is localized in space and frequency, scaling the structure
down in size shifts the structure to higher frequencies and increases the
range of frequencies over which the phases are aligned.

To demonstrate that this correlation is due to the phase spectra and not
to either the power spectra or some unusual property of the code, the same
correlations were determined for an image in which the phase spectrum
was randomized (e.g., Figure 11b). The results are shown in Figure 18. As
expected, the correlations fall to near 0.

These results suggest that our natural scenes contain an alignment of
the phases that extends over greater ranges with increasing frequency. Do
these results suggest that the phase spectra of our natural scenes are scale
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Correlations across space and frequency
Wavelet (1.0 octave)
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Figure 19. Results when measuring correlations between neighbouring
wavelet filters for 24 natural scenes. The image is represented by arrays
of self-similar basis functions in which the bandwidths are proportional to
frequency (e.g., Figure 6b). The ‘distance’ between neighbours in space
is proportional to their size and the ‘distance’ between the neighbours in
frequency is proportional to their bandwidth. The results suggest that
structures in these images follow the parameters of the wavelet and are
expected if the images are roughly scale invariant. That is, structures at
high frequencies tend to be smaller and have broader bandwidths

invariant? If so, a wavelet code should produce substantially different re-
sults.

3.2 Correlations with the wavelet

In the wavelet transform, the basis functions become smaller and increase
their bandwidth with increasing frequency. If these phase structures also
increase with frequency then the correlations should be the roughly con-
stant across the spectrum.

Figure 19 shows the results of measuring correlations when the basis
functions are wavelets like those in Figure 12. The correlations were de-
termined in the same way where the sampling distance is proportional to
the bandwidth. Although the correlations show some increase at higher
frequencies, the difference between correlations in space and frequency re-
mains roughly constant at different frequencies.
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The results suggest that with the wavelet code, the extent of the phase
alignment increases proportional to frequency supporting the notion that
the phase spectra are scale invariant.

4 Discussion

In this paper, we have discussed two forms of scale invariance. The first
form of scale invariance is reflected in the power spectra. For two-dimensional
images, scale invariance implies a power spectrum which falls in the range
of 1/k2.

The second form of scale invariance relates to the local structure of
the image and is dependent on the phase spectrum. Knowing that the
spectrum falls as 1/k? does not imply that the phase spectrum is also scale
invariant. Figure 20 shows examples of two images which have 1/k% power
spectrum but do not consist of scale invariant structures.

The concept of phase alignment in local structures was discussed and it
was noted that the bandwidth of these structures should be proportional to
frequency in a scale invariant image. However, the scale invariance criterion
does not determine what this bandwidth must be. Indeed, Figure 14 showed
two examples of scale invariant images with quite different bandwidths.

Although the images in Figure 14 may appear somewhat naturalistic
they do not appear anything like our natural scenes. One of the important
differences between the structures in these images and those in a natu-
ral scene is that in these synthetic images the structures are selected and
positioned quite independently of each other.

It is also possible to have phase structures which appear to have finite
lengths when measured by the correlation techniques, but which are actu-
ally continuous and drifting across the space-frequency spectrum. Figure
21 provides an example of such an image. Fractal edges like these have
structures which shift and change orientation as one moves from low to
high frequencies. The phases are not aligned across the different frequency
bands.

It is certain that natural scenes do not consist of randomly positioned
and randomly oriented phase structures. There is certainly some continuity
across scale, frequency and position. However, our present methods do not
allow us to measure the extent of this continuity. Nonetheless, I would like
to suggest that natural scenes, like many natural phenomena and like the
fractal edge shown in Figure 21, consist of a variety of continuous phase
structures that twist and shift as they move across scales. A wavelet code
with orientation and frequency selective mechanisms provides a good match
to the shifting and twisting exhibited by these structures.

The mammalian visual system has evolved a strategy efficiently of map-
ping these phase tracks. Consider the analogy of walking down a curved
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path. How does one walk down a path with the minimum number of steps?
By adjusting one’s step size to match the typical curvature of the path (e.g.,
long steps when the path tends to be straight), one can produce an optimal
number of steps to traverse the path. If one makes steps that are longer
than the optimal size, then one will find that a step often takes you off
the path requiring a step back to return to the path. Step sizes that are
too small result in a larger number of steps than required to traverse the
entire path. Most of the steps will be redundant since they will be in the
same direction as the previous step. By this analogy, the visual system
code achieves two goals. First, it produces a sparse representation by pro-
ducing the minimum number of active neurons (steps) to represent natural
scenes. This idea is supported by the results of Field (1987), Daugman
(1989), and Zetzsche (1990) that these codes do indeed produce a sparse
representation of natural scenes and is in line with proposals by Barlow
(e.g.. 1961) that visual systems should take advantage of the redundancy
of their environment.

It must be emphasized what is meant by sparse. For any particular
scene, only a small subset of the population of cortical cells needs to be
active to represent a scene. However, across all scenes, every cell is as likely
to be active as any other. No coefficient is unnecessary and therefore no
coefficient can be removed from the transform without loss. Thus, this
coding does not reduce the dimensionality.

For a visual system, a sparse representation will have a number of advan-
tages. Most of the image energy is concentrated into a few active neurons
providing a good signal to noise ratio if there exists some degree of back-
ground noise in these neurons. Probably more important, however, is that
the information in the image is concentrated. Each active cell is providing
a more complete description of where features (i.e., points of phase align-
ment) are present. This is likely to allow later stages of the visual system
an easier time of analyzing and identifying the structure in the world since
the number of possible images that can be produced from this sparse set
has been reduced considerably.

The second achievement of this representation is that if there exists
structures which are locally continuous like that shown in Figure 21, then
the activity of a cell provides information regarding the likely locations of
other features. The locations of features at one scale can provide a guide for
the search for features at other scales. Indeed, there exists psychophysical
evidence that these ‘phase tracks’ are used by human observers (Hayes,
1988). Following these tracks may provide a method for efficiently searching
through the vast array of data to allow the identification of meaningful and
relevant structure.
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5 Conclusion

Although there has been considerable recent interest in self-similar trans-
forms, there remains the question of when they are effective and when
other types of transform would be more appropriate given the particular
goal in mind. In this paper we have looked at some of the scale invariant
properties of natural scenes and conclude that the mammalian visual sys-
tem has evolved a code which is particularly effective at representing the
particular scale invariant properties of the environment. For natural scenes
and for many scale invariant synthetic scenes, this code produces a sparse,
informative representation.

However, it is NOT possible to conclude that a self-similar code is an
effective representation for all natural phenomena. Scale invariant codes
can be efficient at representing scale invariant phase structures, if efficiency
is defined in terms of sparseness. If the goal is not to produce a sparse
representation or if the data do not show scale invariant properties, the
wavelet representation may be quite inappropriate. For many forms of
data, other transforms may be more useful. However, for the mammalian
visual system and its relation to the mammalian visual environment, the
self-similar solution may be the most effective for what it needs to achieve.
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