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Natural scenes, like most all natural data sets, show considerable redundancy. Although many forms of redun-
dancy have been investigated (e.g., pixel distributions, power spectra, contour relationships, etc.), estimates of
the true entropy of natural scenes have been largely considered intractable. We describe a technique for esti-
mating the entropy and relative dimensionality of image patches based on a function we call the proximity
distribution (a nearest-neighbor technique). The advantage of this function over simple statistics such as the
power spectrum is that the proximity distribution is dependent on all forms of redundancy. We demonstrate
that this function can be used to estimate the entropy (redundancy) of 3�3 patches of known entropy as well
as 8�8 patches of Gaussian white noise, natural scenes, and noise with the same power spectrum as natural
scenes. The techniques are based on assumptions regarding the intrinsic dimensionality of the data, and al-
though the estimates depend on an extrapolation model for images larger than 3�3, we argue that this ap-
proach provides the best current estimates of the entropy and compressibility of natural-scene patches and
that it provides insights into the efficiency of any coding strategy that aims to reduce redundancy. We show
that the sample of 8�8 patches of natural scenes used in this study has less than half the entropy of 8�8
white noise and less than 60% of the entropy of noise with the same power spectrum. In addition, given a finite
number of samples ��220� drawn randomly from the space of 8�8 patches, the subspace of 8�8 natural-scene
patches shows a dimensionality that depends on the sampling density and that for low densities is significantly
lower dimensional than the space of 8�8 patches of white noise and noise with the same power spectrum.
© 2007 Optical Society of America

OCIS codes: 330.1880, 330.1800, 330.5510, 330.5020, 100.7410.
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. INTRODUCTION
o be efficient, any coding strategy must take into account
he statistical redundancy of the signals that are to be en-
oded. Whether the purpose is to compress an image or to
ncode an image to facilitate recognition, it can be argued
hat one must take advantage of the redundant structure
f the data. Recent studies of both the visual and auditory
ystems of vertebrates have argued that these sensory
ystems make use of the statistical redundancy of natural
ignals in an attempt to maximize coding efficiency1–4

see Ref. 5 for a review). However, in general, measuring
he true entropy of a signal class has proved computation-
lly intractable for all but extremely simple data sets.
ithout knowledge of this redundancy, it remains an

pen question of how the absolute efficiency of these sen-
ory systems, or of any compression system, should be
uantified.
Natural scenes have been studied extensively over the

ast two decades, and these studies have revealed that
uch images have a large number of statistical regulari-
ies. Kersten3 was able to provide an upper bound on the
ntropy of coarse quantized images based on the ability of
uman observers to guess the values of missing pixels.
owever, there was no assumption that this approach
1084-7529/07/040922-20/$15.00 © 2
onverged on the true entropy. A variety of other efforts
ave measured particular forms of redundancy, including
airwise statistics as described by the power spectra and
utocorrelation function (see Ref. 1) as well as a variety of
ther structures, including the contour structure (e.g.,
ef. 6), the pairwise relations between nonlinear trans-

orms of the image,7,5 and the low-order pixel statistics.8

ee et al.9 provided a detailed analysis of the statistical
tructure of 3�3 high-contrast patches of natural scenes.
lthough they did not provide a measure of entropy, they
emonstrated that most of their natural-scene patches oc-
upied only a small fraction of the measured space.

Sparse coding techniques (e.g., Ref. 10) and related in-
ependent components analysis (ICA) techniques (e.g.,
ef. 11) search for solutions that attempt to minimize the
ependencies between basis vectors. If such dependencies
ould be removed, then the response histograms of the
ectors (the marginals) could be used to determine the en-
ropy. However, despite the name, the independent com-
onents produced by ICA are far from independent. Simi-
arly, compression techniques such as Joint Photographic
xperts Group (JPEG)12 and JPEG-200013 employ a dis-

rete cosine transform (DCT) and discrete wavelet trans-
orm (DWT), respectively, to attempt to minimize depen-
007 Optical Society of America
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encies. The DCT–DWT basis coefficients are then
rocessed by a Huffman or arithmetic encoding stage that
ttempts to remove redundancy and thus yield a highly
ompressed stream. Indeed, one can provide an estimate
f entropy based on the average bit rate of this com-
ressed stream for a particular class of input. However,
uch an approach assumes that the compression strategy
s ideal, and thus the compressed stream is maximally
ompressed. In reality, the basis coefficients show marked
tatistical dependencies across space, scale, and orienta-
ion; and the majority of encoders cannot take into ac-
ount all of these dependencies. As a result, current com-
ression algorithms provide only an upper bound on the
rue image entropy.

This paper describes a technique to estimate entropy of
complex data set and applies this estimate to natural

cenes. Although we focus on natural scenes, we empha-
ize that the techniques described here are by no means
imited to visual signals; the methodology can be applied
o any data that behave according to a specific assump-
ion (described shortly).

The major difficulty in computing entropy is that the
tandard approach generally requires knowledge of the
ull probability distribution from which the data are real-
zed. Consider, for example, a source that emits 8

8 pixel images X= �X1 ,X2 , . . . ,X64� in which each pixel
i takes on one of l=256 shades of gray. In this case, there
re l64=25664=2512 possible 8�8 pixel patterns (equiva-
ent to approximately 10154 or 1054 googol of images and
oughly 1069 times the estimated 1085 estimated particles
n the universe). To directly compute the entropy of a set
f 8�8 natural images via the standard entropy equa-
ion, one must therefore obtain enough images to deter-
ine the probability distribution px over all 2512 images

nd then use this probability distribution to calculate the
ntropy.

In most cases, estimates of the entropy consider only
he first-and sometimes second-order entropy of a particu-
ar population. Fourier spectral analysis, in particular,
as proved useful for analyzing pairwise pixel-value rela-
ionships and has given rise to well-accepted properties
uch as the 1/ f2 power spectrum (f=spatial frequency) of
atural scenes.1,14,15 In addition, marginal probability
istributions of DCT and DWT coefficients are typically
ell modeled by using a leptokurtotic generalized Gauss-

an density, which has served as a cornerstone in the de-
ign of quantization and rate-control mechanisms of mod-
rn image compression standards.12,13,16 Indeed, several
nvestigators have shown correspondences between corti-
al simple-cell receptive fields and the basis functions
chieved when one attempts to jointly optimize kurtosis–
tatistical independence and reconstruction accuracy.
owever, regardless of the (linear) basis set used to rep-

esent the data, unless the basis coefficients are truly in-
ependent (i.e., the joint distribution can be factorized
nto a product of marginal distributions), computing the
edundancy of the data based on these marginals will
ead to an overestimate of entropy (underestimate of re-
undancy). Although attempts have been made to model
he dependencies that exist between basis
oefficients,4,6,7,17 the somewhat intractable combinator-
cs involved in such an approach limits the numbers of co-
fficients that can be used to derive the joint distribu-
ions. Indeed, we cannot determine the efficiency of any
articular coding or compression algorithm without
nowing the true entropy. And, without this estimate, we
annot determine how much of the redundancy has been
xploited by any particular coding or compression algo-
ithm.

In this paper, we take an alternative approach to esti-
ating the redundancy of natural scenes that does not re-

uire a direct computation of the probability distribution
f the data. Instead, the technique we employ borrows
eavily from nearest-neighbor-based techniques that
ave previously been used to estimate entropy of rela-
ively low-dimensional data.18–20 We note the fact that im-
ges drawn from the natural environment are not random
atterns; rather, natural scenes typically occupy a sub-
pace of the space of all possible images.1 The redundancy
f the data is determined by the size of this subspace21

see also Ref. 22, Theorems 3.1.1 and 15.7.1; Ref. 23). Ac-
ordingly, we apply nearest-neighbor-based techniques to
stimate the relative density of the space of natural
cenes by measuring the distances between images as the
ample size is increased. We extend the previous method-
logy to data with larger dimensionality and use this to
alculate two properties of images:

1. The entropy, which specifies the effective (log) size of
he subspace;

2. The relative dimensionality (RD), which specifies the
imensionality that the subspace appears to have given a
imited number of samples.

This entropy measure can be likened to a kind of “re-
erse birthday problem.” In the birthday problem, one es-
imates the probability �p� that two people have the same
irthday given a group of people of size N and l=365 pos-
ible birthdays. With N�23, the probability p�0.5 that
ny two people will have the same birthday24 (see also
ef. 25). In the reverse problem, one estimates the num-
er of birthdays l from the probability of obtaining a pair
f matching birthdays given a group of size N. This gen-
ral approach has a long history and was used as far back
s Ref. 26 to estimate the population of fish in a lake from
amples taken from the lake. For our purposes, the argu-
ent is that the relative probability of co-occurrences can

rovide not only an estimate of the size of the population
ut also the entropy of the population. Indeed, the ap-
roach reveals the size of the population only if one has a
nown distribution (e.g., see Ref. 27); however, without
nowledge of the distribution, the approach (as we will ar-
ue) can still provide a measure of entropy.

Furthermore, extending the reverse birthday problem
y relaxing the perfect-match criterion to a match of
ithin D days requires sampling only �1.2�365/ �2D+1��
24 people24 to estimate the number of birthdays. In gen-
ral, given N samples with sufficiently large N and two
verage nearest-neighbor distances DA and DB for data
ets A and B, respectively, if DA�DB we expect the en-
ropy of A to be greater than the entropy of B. This is the
asic technique that we employ: Given samples from a
ata set, we estimate the entropy of the data based on
earest-neighbor matches in which D is defined as the



E
s

r
s
m
o
T
e
p
c

L
c
a
n
p
n
a
f
d
s
c
i
o
p
g

r
t
n
c
f

n
�
s
t
u
s
t
b
w
t

b
o
s
r
s
I
r
s
v
b

F
c
t
d
d
d
n
e

924 J. Opt. Soc. Am. A/Vol. 24, No. 4 /April 2007 D. M. Chandler and D. J. Field
uclidean distance. This process is illustrated in Fig. 1 for
amples consisting of natural-scene patches.

As shown in Fig. 1, images from a given data set were
andomly divided into two groups: Group T, which con-
isted of images whose patches served as the to-be-
atched “target” samples, and group N, which consisted

f images whose patches served as the target’s neighbors.
he images were divided into r�r patches, and then for
ach target patch in group T, an exhaustive search was
erformed to find the corresponding patch in group N
losest in Euclidean distance to the target patch.

Following from the work by Kozachenko and
eonenko18 and Victor,19 we introduce a function that we
all the “proximity distribution,” which specifies the aver-
ge (log) nearest-neighbor distance as a function of the
umber of samples (see Figs. 5, 6, 9, and 10 later in this
aper). Our primary assumption is that given a sufficient
umber of samples, the proximity distribution behaves as
linear function of the (log) number of samples (i.e., the

unction has a fixed slope); this assumption holds for any
ata set that is subject to noise (e.g., digitized natural
cenes). Thus, with a sufficient number of samples, Koza-
henko and Leonenko18 and Victor19 argue that the prox-
mity distribution can lead to an estimate of the entropy
f the data. Even in cases in which only a portion of the
roximity distribution function can be measured, we ar-
ue that rational extrapolations can be made that allow a

ig. 1. Diagram of the procedure used in the experiments. Imag
ontaining the to-be-matched “target” samples, and group N conta
hen extracted from the images in a nonoverlapping fashion. For
ure was performed to find the patch in group N with the minim
ifference). The average log nearest-neighbor distance was then
istances over all target patches; this process was then repeated
eighbor distance as a function of the number of samples (the p
xamples of proximity distribution functions.
easonable estimate of entropy and that comparisons be-
ween entropy estimates of different image types (e.g.,
atural scenes versus noise with a 1/ f2 power spectrum)
an provide insights into the contributions of various
orms of redundancy to the entropy.

As we demonstrate in Subsection 2.D, nearest-
eighbor-based techniques can estimate the entropy of 3
3 natural images using fewer than 218=262,144

amples. Furthermore, we present in Section 4 extrapola-
ions of the proximity distribution functions that can be
sed to estimate entropy of 8�8 images using only 218

amples. We demonstrate that this approach estimates
he entropy of 8�8 patches drawn from natural scenes to
e less than half the entropy of 8�8 patches of Gaussian
hite noise and less than 60% of the entropy of noise with

he same power spectrum as natural scenes.
In addition to estimating entropy, there exists a wide

ody of research developed to estimate the dimensionality
f a data set28–34 (see Ref. 35 for a review). Examples of
uch techniques include projection-based dimensionality-
eduction methods such as principal components analy-
is, nonlinear methods based on local topology such as
somap33 and locally linear embedding (LLE),34 and a va-
iety of techniques based on nearest neighbors.28–32 It
hould be emphasized that the definition of “dimension”
aries in the literature; a number of dimensions have
een reported, including correlation dimension, Hausdorff

a given class were randomly divided into two groups: Group T
the samples from the population. Patches of size r�r pixels were
arget patch in group T, an exhaustive, brute-force search proce-
uclidean distance to the target patch (minimum L2-norm of the
ted by computing the sample mean of the minimum Euclidean

reasing numbers of samples to compute the average log nearest-
ty distribution). See Figs. 5, 6, 9, and 10 later in this paper for
es from
ining
each t
um E

estima
for inc
roximi
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imension, pointwise dimension, and quantization dimen-
ion; see Ref. 36 for a review. Here, we borrow from these
earest-neighbor-based approaches and use our proximity
istributions to estimate dimensionality. However,
hereas the majority of dimensionality estimation tech-
iques aim to estimate the intrinsic dimensionality of the
ata, here we do not focus on the intrinsic dimensionality
or two reasons: (1) digitized natural images are both
uantized and subject to noise, and we argue that the in-
rinsic dimensionality is equivalent to the dimensionality
f the space in which the data are embedded (e.g., the in-
rinsic dimensionality is given by the number of pixels for
igitized natural scenes); (2) real sensory systems cannot
ncode input signals in an error-free manner, and thus
he error puts a limit on the entropy and dimensionality
hat is relevant to the sensory system. Accordingly, in this
aper, we focus on the RD, defined as the dimensionality
hat the data appear to have, given a limited number of
amples (the sampling density). As has been noted previ-
usly (see Ref. 35), and as we will confirm, the RD
hanges as a function of the sampling density. We empha-
ize that this dependence on sampling density can pro-
ide insights into the geometry of the data space (the
anifold of natural scenes).
The RD is analogous to the dimensionality estimates

iven by techniques such as Isomap33 and LLE.34 How-
ver, the emphasis here is that the dimensionality is de-
endent on the number of samples and that this depen-
ence can provide insight into the data space. For
xample, Fig. 2(a) depicts the classical Swiss roll data33 to
hich Gaussian white noise has been added. Without the
ddition of noise, the data would have an intrinsic dimen-
ionality of two; i.e., the data would lie on the two-

ig. 2. (a) Swiss roll data to which Gaussian white noise has
een added (here, showing 3200 samples), (b) eight random
amples of the noisy Swiss roll data; here, there are too few
amples to discern any particular geometry �RD=3�, (c) 80 ran-
om samples of the noisy Swiss roll data; here, there are enough
amples to begin to see a two-dimensional Swiss roll manifold
RD=2�, (d) 800 random samples of the noisy Swiss roll data;
ere, there are enough samples to see that the roll actually has a
hickness �RD=3�.
imensional surface (manifold) shown as a wireframe in
ig. 2(a), and thus with a proper transformation that “un-
olls” the data, any data point could be described with
nly two coordinates. The addition of the noise, however,
ncreases the intrinsic dimensionality of the data to three
three coordinates are required to specify any data point).

Clearly, with enough samples, one can readily visualize
he intrinsic dimensionality of the data. However, given
nly a coarse sampling, the data might appear to have a
astly different dimensionality—a dimensionality that is
elative to the number of samples and that may thus pro-
ide insight into the geometry of the space. For example,
igs. 2(b)–2(d) depict the noisy swiss roll data given only
, 80, and 800 random samples, respectively. In Fig. 2(b),
here is no clear geometry to the data; thus, given only 8
amples, one would estimate that the data are three di-
ensional �RD=3�. In Fig. 2(c), given 80 samples, the

wiss roll geometry begins to emerge, and one might
uess that the data fall on this two-dimensional, swiss
oll manifold �RD=2�. In Fig. 2(d), given 800 samples, it
ecomes apparent that there is actually a thickness to the
wiss roll, and thus the RD is equivalent to the intrinsic
imensionality of three.
Now consider the data shown in Fig. 3(b), which corre-

ponds to an unrolled version of the noisy Swiss roll data.
s with the noisy Swiss roll data, these unrolled data
ave an intrinsic dimensionality of three. However, be-
ause the data have been unrolled, as shown in Fig. 3(b),
D=2 given only eight samples. Similarly, given 80
amples [Fig. 3(c)], there are still an insufficient number
f samples to discover the thickness of the plane �RD=2�.
t 800 samples [Fig. 3(d)], one begins to discover the third
imension �RD=3�.
Thus, even though the noisy Swiss roll data and the un-

olled version of the data have the same intrinsic dimen-
ionality and entropy, the data sets have markedly differ-
nt geometries. Accordingly, each data set gives rise to a
ifferent vector of RDs: [3, 2, 3] and [2, 2, 3] for the rolled
nd unrolled versions, respectively, given 8, 80, and 800
amples, respectively. In Subsection 2.D and Section 3, we
se nearest-neighbor-based techniques to measure the

ig. 3. (a) Unrolled version of the noisy Swiss roll data in Fig. 2.
b) Eight random samples of the unrolled data; here, there are
oo few samples to clearly expose the third dimension �RD=2�; (c)
0 random samples of the unrolled data; here, there are still too
ew samples to clearly expose the third dimension �RD=2�; (d)
00 random samples of the unrolled data; here, there are enough
amples to see that the plane has a thickness �RD=3�.
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D given 1–218 samples of 3�3 and 8�8 images, respec-
ively. We show that in this range of sample sizes the RD
f natural-scene patches is significantly lower than the
D of Gaussian white-noise patches and that this differ-
nce in RD increases for larger patch sizes.

This paper is organized as follows: Section 2 describes
he general methods used in the experiments performed
o investigate entropy and RD, including details of the ex-
erimental stimuli and the theory behind the methods.
esults and analyses of the experiments are provided

hroughout Sections 3–5. A discussion is provided in Sec-
ion 6. General conclusions are provided in Section 7.

. GENERAL METHODS
his section describes the experimental stimuli and pro-
edures used in the experiments, an overview of the
heory underlying the techniques, a derivation of the
heory for Gaussian white noise, and a verification of the
heory on 3�3 patches.

Three experiments were performed to estimate the en-
ropy and dimensionality of various types of images.
irst, nearest-neighbor distances were measured for 8
8 patches cropped from images of various types; this ex-

eriment was designed to investigate the entropy and RD
f a typical 8�8 image patch (Subsection 3.A). Next,
earest-neighbor distances were measured for 8�8
atches in which each patch was normalized for mean in-
ensity and root-mean-square (RMS) contrast; this experi-
ent was designed to investigate the entropy and RD of

he pattern of a typical 8�8 image patch (Subsection
.B). Finally, nearest-neighbor distances were measured
or 16�16 patches to provide an estimate of how entropy
nd RD scale with patch size (Section 5).

. Experimental Stimuli
timuli used in this study were r�r pixel patches
ropped from 8-bit R�R pixel digitized and natively digi-
al images37 with pixel values in the range 0–255. Five
ypes of images were used:

1. Gaussian white noise, in which each pixel was drawn
ndependently from a common Gaussian distribution;

2. 1/ f noise (amplitude spectrum), in which each Fou-
ier component was drawn independently from a Gauss-
an distribution with standard deviation inversely propor-
ional to the spatial frequency of the Fourier component;

3. 1/ f2 noise (amplitude spectrum), in which each Fou-
ier component was drawn independently from a Gauss-
an distribution with standard deviation inversely propor-
ional to the squared spatial frequency of the Fourier
omponent;

4. Spectrum-equalized noise, in which each Fourier
omponent was drawn independently from a Gaussian
istribution with variance proportional to the sample
ariance measured using a collection of natural scenes;

5. Natural scenes obtained from the van Hateren
atabase.38

The (real-valued) pixels of all images were quantized to
bits (256 levels) of gray-scale resolution, as necessary,

ia uniform scalar quantization39 in which real-valued
ixel X was mapped to its quantized (discrete-valued) ver-
ion X� via X�= �X+ 1

2 �, where �·� denotes the floor operator.
he details of the image-generation process are as follows

experiment-specific details are provided throughout Sec-
ions 3 and 5).

Gaussian white noise: The Gaussian white noise im-
ges were generated by drawing R�R independent real-
zations from the following Gaussian distribution:

f�x� =
1

��2�
e−��x − ��2/2�2�, �1�

here the mean � and standard deviation � were set as
escribed in Sections 3 and 5. The pixel values of the re-
ulting images were quantized to 8 bits. Figure 4(a) de-
icts one of the white-noise images used in this study.
1/ f and 1/ f2 noise: The 1/ f noise images were generated

y first creating an R�R Gaussian white-noise image via
q. (1) and then filtering that image with a digital, finite-

mpulse response filter with the following frequency re-
ponse:

H�u,v� = �
1 u = v = 0

1

�u2 + v2
else � , �2�

here u ,v� �0,R−1�. The 1/ f2 noise images were gener-
ted in a similar fashion by creating an R�R Gaussian
hite-noise image [Eq. (1)], followed by filtering with a
igital filter with the following frequency response:

H�u,v� = �
1 u = v = 0

1

u2 + v2
else � , �3�

here u, v� �0,R−1�. The filtering was performed in the
requency domain by means of the discrete Fourier trans-
orm (DFT) and multiplication of frequency responses
DFT coefficients). The pixel values of the resulting im-
ges were offset and scaled to span the range 0–255 and
hen quantized to 8 bits. Figures 4(b) and 4(c) depict, re-
pectively, sample 1/ f and 1/ f2 images used in this study.

Spectrum-equalized noise: The spectrum-equalized
oise images were generated in a fashion similar to that
sed for the 1/ f and 1/ f2 noise images except that the fil-
ering was applied separately to each r�r pixel patch and
as performed by using an empirical H�u ,v� determined
ased on the spectra of a large collection of r�r pixel
atches. Specifically, a Gaussian white-noise image was
reated via Eq. (1), and then frequency-domain filtering
as performed by multiplying the spectrum of each r�r
ixel patch with the following r�r element frequency re-
ponse:

H�u,v� = ��R
2 �u,v� + �I

2�u,v�, �4�

here u, v� �0,r−1�, and where �R�u ,v� and �I�u ,v� de-
ote the sample standard deviations of the real and

maginary components, respectively, of the DFT coeffi-
ient corresponding to frequency u, v; the sample stan-
ard deviations �R�u ,v� and �I�u ,v� were measured
ased on a collection of r�r patches from 71 natural
cenes (described next). The pixel values of the resulting
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mages were quantized to 8 bits. Figure 4(d) depicts one of
he spectrum-equalized noise images used in this study.

Natural scenes: Seventy-one digitized natural scenes
ere selected at random from the van Hateren
atabase.38 The original images were of size 1536�1024
nd contained 16-bit pixel values. A 1024�1024 section
as cropped from each image, and then the pixel values of

hat 1024�1024 section were converted to a floating-
oint representation. The pixels were then offset, scaled
o span the range 0–255, and quantized to 8 bits. Refer-
nce 40 provides further details regarding the specific im-
ges used in this study. Figure 4(e) depicts one of these
mages. We wish to emphasize that our estimates of en-
ropy and RD are dependent on the particular class of im-
ges used here, and thus the results should not be consid-
red universal for all natural scenes. The van Hateren
atabase is attractive owing to its widespread use; how-
ver, factors such as camera blur, scene content, and noise
ll have a significant impact on the results.

. Experimental Procedures
et DN

* denote the Euclidean distance between a patch
nd its nearest neighbor among N neighbors. The average
og nearest-neighbor distance E�log2 DN

* 	 was estimated
y using an exhaustive, brute-force search procedure.
ach set of R�R images from each image class was ran-
omly divided into two groups: Group J, which consisted
f images whose patches served as the to-be-matched
target” samples, and group N, which consisted of images
hose patches served as the target’s neighbors. This divi-

ion into targets and neighbors was used to avoid comput-
ng nearest-neighbor distances between patches from the
ame image. Patches of size k=r�r pixels were cropped

ig. 4. Example stimuli used in the experiments �R�R=102
pectrum-equalized noise with r�r=8�8; (e) natural scene crop
romote visibility, the intensities of these images have been adju
rom each R�R image in a nonoverlapping, sequential
aster-scan order starting from the top-left corner of the
mage.

For each target patch in group J, an exhaustive search
as performed to find the corresponding patch in group N

losest in Euclidean distance to the target patch. This
rocedure is illustrated in Fig. 1 and is formally defined
s follows: Let X�Jt�, t� �1,T�, denote the tth target patch,
nd let X�Nn�, n� �1,N�, denote one of its neighbors. For
ach patch in group J and each value of N, the search pro-
edure yields the Euclidean distance DN,t

* between X�Jt�

nd its nearest neighbor among N neighbors via

DN,t
* = min

n��1,N�

X�Jt� − X�Nn�
L2

= � min
n��1,N�

�

i=1

k

�Xi
�Jt� − Xi

�Nn��2��1/2

, �5�

here Xi denotes the ith pixel of X. The search procedure
as performed to compute DN,t

* for all T target patches,
nd then E�log2 DN

* 	 was estimated via the sample mean
ver all target patches, i.e., E�log2 DN

* 	
�1/T�
t=1

T log2 DN,t
* .

In all experiments, DN,t
* was measured at power-of-two

alues of N up to 2K (i.e., N=1,2,4, . . . ,2K), where K was
etermined by the total number of images in group N, the
atter of which was chosen based on the patch size (see
ections 3 and 5). This process was repeated for at least
hree trials for each patch in group J. Owing to the enor-
ous memory and processing-time requirements, the to-

al number of patches in group J was selected based on
nitial runs and was varied across image classes and

4�: (a) Gaussian white noise; (b) 1/ f noise; (c) 1/ f2 noise; (d)
om image imk04103 of the van Hateren database [note that to
nd (d) depicts only the top-left 256�256 section].
4�102
ped fr
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atch size; further details regarding the total number of
atches in groups J and N are provided throughout Sec-
ions 3 and 5.

. Theory
n this paper, we estimate entropy and dimensionality
ased on nearest-neighbor distances. This section pro-
ides a brief outline of the mathematical theory upon
hich this technique is based. The estimation of entropy
ased on nearest-neighbor distances was initially pro-
osed by Kozachenko and Leonenko18 and was later ap-
lied to neural data by Victor19 and subsequently to the
stimation of mutual information by Kraskov et al.20 and
y Kybic.41 This is a so-called binless estimator of differ-
ntial entropy that operates by estimating iX�x��
log2 fX�x� via nearest-neighbor distances, where X de-
otes a (possibly vector-valued) random variable with cor-
esponding probability density function fX�x�. In this for-
ulation, differential entropy, h�X�, is the expected value

f iX�x�:

h�X� � −�
x�A

fX�x�log2 fX�x�dx

=�
x�A

fX�x�iX�x�dx = E�iX�x�	 �
1

M 

m=1

M

îX�xm�,

�6�

here the final relation approximates the expectation in
he third relation with the sample mean computed using

observed samples, x1 ,x2 , . . . ,xM, drawn according to fX.
pecifically, the approximation results from (1) replacing
he integral with a sum; (2) assuming fX�x�dx�1/M,
xm; and (3) using îX�xm� as an estimator of iX�xm�.
The estimator îX�x� is computed based on the Euclid-

an distance DN
* between x and its nearest neighbor

mong the remaining N=M−1 observations as

îX�x� = kE�log2 DN
* 	 + log2�AkN

k � +
�

ln 2
, �7�

here � is the Euler constant, and where Ak
k�k/2 /	�k /2+1� denotes the surface area of a
-dimensional hypersphere. Combining Eqs. (6) and (7),
�X� is approximated by

h�X� �
k

M 

m=1

M

log2 DN,m
* + log2�AkN

k � +
�

ln 2
, �8�

here DN,m
* is the Euclidean distance between xm and its

earest neighbor among the other N=M−1 observations.
For images in which the pixel values are drawn inde-

endently from a common Gaussian distribution, the pix-
ls are independently and identically distributed (iid)
aussian. The Gaussian distribution possess several fa-
orable mathematical properties that facilitate an analy-
is of its nearest-neighbor-distance behavior and entropy.
n particular, the differential entropy of a Gaussian ran-
om variable X can be computed directly via
h�X� =
1

2
log2�2�e�2� bits, �9�

here � denotes the standard deviation of the Gaussian.
oreover, of all distributions with a given fixed variance,

he Gaussian distribution maximizes differential entropy
Ref. 22, Theorem 9.6.5).

In addition, for iid Gaussian realizations there exists
n analytical solution for the expected log nearest-
eighbor distance among N neighbors �E�log2 DN

* 	�. We
how this by first deriving the distribution of Euclidean
istances between two patches, and then we extend that
esult to the expected minimum distance among N
atches.
Distribution of distances between two patches: Without

oss of generality, we assume that each pixel is drawn
rom a zero-mean Gaussian distribution.42 Let Xi
N�0,�2� and Yi�N�0,�2� denote the ith pixel of image X

nd Y, respectively. Clearly, Xi−Yi�N�0,2�2�. Thus, we
an define a new random variable D̃= �1/2�2�
i=1

k �Xi
Yi�2, which follows a 
2 distribution with k degrees of

reedom.43 Observe that D̃ is 1/2�2 times the squared Eu-
lidean distance between X and Y. Given that D̃�
k

2, the
umulative distribution function is given by FD̃�d�=1
	�k /2 ,d2 /2� /	�k /2�, where 	�a ,x� and 	�a� are the up-
er incomplete and complete gamma functions, respec-
ively; and the corresponding probability density function
s given by fD̃�d�= �dk/2−1e−d/2� / �2k/2	�k /2��.

Expected nearest-neighbor distance among N patches:
et D̃N

* denote 1/2�2 times the squared Euclidean dis-
ance between a patch and its nearest neighbor among N
eighbors. The cumulative distribution function for D̃N

* is
hus given by FD̃N

* �d�=1− �1−FD̃�d��N, and the correspond-
ng probability distribution function is given by fD̃N

* �d�
N�1−FD̃�d��N−1fD̃�d�. Note that the nearest-neighbor
istance DN

* = �2�2D̃N
* �1/2 and thus log2 DN

* = 1
2 log2�2�2D̃N

* �
1
2 log2�2�2�+ 1

2 log2 D̃N
* . The expected log nearest-

eighbor distance E�log2 DN
* 	 is therefore given by

�log2 DN
* 	

=
1

2
log2�2�2� +

1

2
E�log2 D̃N

* 	

=
1

2
log2�2�2� +

1

2�0

�

fD̃N
* ���log2���d�

=
1

2
log2�2�2� +

N

2�0

�

�1 − FD̃����N−1fD̃���log2���d�

=
1

2
log2�2�2� +

N

2�0

� �	�k/2,�2/2�

	�k/2� �N−1

�
1

2k/2	�k/2�
�k/2−1e−�/2 log2���d�

=
1

2
log2�2�2� +

N

2k/2+1	�k/2�N
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��
0

�

	�k

2
,
�2

2 �
N−1

�k/2−1e−�/2 log2���d�. �10�

o verify that the experimental procedures described in
ubsection 2.B yield results that are consistent with Eq.

10), 8�8 patches cropped from images in which the pixel
alues were iid Gaussian were used as a control condi-
ion. The Gaussian white-noise images were generated as
escribed in Subsection 2.A via Eq. (1) with fixed mean
=127.5, and with three different standard deviations �
9.43, �=2.77, and �=0.77. Seventeen images of size
024�1024 pixels were generated for each standard de-
iation, one of which was placed into group J, and the re-
aining 16 of which were placed into group N. Thus,

here were a total of �1024�1024� / �8�8�=16,384 target
atches and 16� �1024�1024� / �8�8�=262,144 potential
eighbors.
Figure 5 depicts proximity distribution functions com-

uted via Eq. (10) (computed digitally via a summation-
ased approximation to the integral) and the correspond-

ig. 5. Proximity distribution functions for iid Gaussian data
omputed via Eq. (10) (solid curves) and measured experimen-
ally (circles). In each graph, the horizontal axis denotes the
umber of samples N; the vertical axis denotes the corresponding
�log2 DN

* 	 computed via Eq. (10). (a) Proximity distribution func-
ions for a fixed dimensionality �k=64� and various values of
tandard deviation �; (b) proximity distribution functions for a
xed standard deviation ��=0.77� and various values of dimen-
ionality k.
ng data measured experimentally. In each graph, the
ertical axis corresponds to E�log2 DN

* 	 and the horizontal
xis corresponds to the number of samples (here, N
1,2,4, . . . ,218). Figure 5(a) depicts proximity distribu-

ion functions for a fixed dimensionality k=64 and vari-
us values of standard deviation �. Figure 5(b) depicts
roximity distribution functions for a fixed standard de-
iation �=0.77 and various values of dimensionality k.
otice that the theoretical and experimental results are
ery much in agreement �R2�0.99�.

The trends in Fig. 5(a) demonstrate that for a fixed di-
ensionality �k=64�, decreasing the standard deviation

f the underlying Gaussian effects a downward shift in
he proximity distribution function. Indeed, this observa-
ion follows directly from Eq. (10): Notice that only the
eft-hand portion of the sum depends on � and that this
ortion depends only on �. The trends in Fig. 5(b) demon-
trate that when the standard deviation is fixed ��
0.77�, changing the dimensionality effects both a down-
ard shift and a change in the slope.

. Verification of the Theory on 3Ã3 Patches
hen the slope of the proximity distribution function of a

ata set has converged (i.e., the RD has converged to the
ntrinsic dimensionality of the data), there are a sufficient
umber of samples to estimate the entropy. Here, we
how this result experimentally by applying Eq. (8) to
earest-neighbor distances measured for 3�3 patches.
Patches of size 3�3 pixels (r=3, k=9) drawn from

aussian white-noise, spectrum-equalized noise, and
atural scenes were used in this verification experiment.
he Gaussian white-noise images were generated via Eq.

1) with �=127.5 and �=32. For the Gaussian white-noise
nd spectrum-equalized noise images, 13 images of size
�R=513�513 pixels were generated as described in
ubsection 2.A; for each image type, three images were
laced into group J, and the remaining 10 images were
laced into group N, resulting in 3� �513�513� / �3�3�

ig. 6. Proximity distribution functions for 3�3 patches of
aussian white noise, spectrum-equalized noise, and natural

cenes. The horizontal axis denotes the number of samples N; the
ertical axis denotes the corresponding E�log2 DN

* 	 estimated via
sample mean over all target patches. Black circles, Gaussian
hite noise; light-gray circles, spectrum-equalized noise; stars,
atural scenes. The solid lines represent a slope of −1/9th; notice
hat all three curves eventually converge on this slope.
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87,723 target patches and 10� �1024�1024� / �8�8�
292,410 potential neighbors. For the natural scenes, im-
ges of size 1024�1024 pixels were obtained as described
n Subsection 2.A, and patches were selected from the top-
eft 1023�1023 portion of each image. Five images were
laced into group J, and 66 images were placed into
roup N, resulting in 5� �1023�1023� / �3�3�=581,405
arget patches and 66� �1023�1023� / �3�3�=7,674,546
otential neighbors.
Figure 6 depicts the resulting proximity distribution

unctions; the horizontal axis denotes the number of
amples N, and the vertical axis denotes the correspond-

ig. 7. RD curves for 3�3 patches of Gaussian white noise,
pectrum-equalized noise, and natural scenes. The horizontal
xis denotes the number of samples N; the vertical axis denotes
he corresponding RD. Black circles, Gaussian white noise; light-
ray circles, spectrum-equalized noise; stars, natural scenes. The
olid gray line denotes the intrinsic dimensionality of k=9 for all
hree data sets (the natural scenes possess an intrinsic dimen-
ionality of k=9 owing to photon noise).

ig. 8. Entropy estimates for 3�3 patches of Gaussian white
oise, spectrum-equalized noise, and natural scenes. The hori-
ontal axis denotes the number of samples N; the vertical axis
enotes the entropy computed via Eq. (8) using the correspond-
ng value of N. Black circles, Gaussian white noise
7.0 bits/pixel�; light-gray circles, spectrum-equalized noise
5.5 bits/pixel�; stars, natural scenes �3.9 bits/pixel�. The solid
ray lines indicate the actual entropies of Gaussian white noise
nd spectrum-equalized noise (7.0 and 5.5 bits/pixel, respec-
ively) as computed via Eq. (9); the dashed line denotes the en-
ropy estimate of 3.9 bits/pixel for natural scenes.
ng log nearest-neighbor distance averaged over all
atches in group J. RDs and estimates of entropy [com-
uted via Eq. (8)] based on these proximity distribution
ata are provided in Figs. 7 and 8, respectively. The solid
ray line in Fig. 7 denotes an intrinsic dimensionality of
=9; the solid gray lines in Fig. 8 denote the true values
f entropy as computed via Eq. (9). Note that due to the
resence of photon noise, the natural scenes also possess
n intrinsic dimensionality of k=9.
Notice from the proximity distribution functions of Fig.
that for a given number of samples, spectrum-equalized
oise exhibits a lower average log nearest-neighbor dis-
ance than Gaussian white noise, and natural scenes ex-
ibits a lower average log nearest-neighbor distance than
oth Gaussian white noise and spectrum-equalized noise.
imilarly, notice from Fig. 7 that although the RD curves

or all three image types eventually converge to a dimen-
ionality of approximately k=9, spectrum-equalized noise
xhibits a lower RD than Gaussian white noise, and natu-
al scenes exhibit a lower RD than both Gaussian white
oise and spectrum-equalized noise.
Because the RD curves of Fig. 7 have approximately

onverged to a dimensionality of k=9 given N=217

amples, there are sufficient data to estimate entropy.
he entropy estimates shown in Fig. 8 were obtained by
sing Eq. (8) with k=9. Indeed, for Gaussian white noise
nd spectrum-equalized noise, the estimates of entropy
ield the correct values: 63 bits �7.0 bits/pixel� for Gauss-
an white noise and 49 bits �5.5 bits/pixel� for spectrum-
qualized noise [the actual entropies were computed via
q. (9); see Ref. 44]. Here, we obtain an estimate of
5 bits �3.9 bits/pixel� for the entropy of 3�3 natural
cenes. We stress again that this result is not universal
or all natural scenes; rather, it is dependent on the par-
icular sample of images from the van Hateren database
sed here.
These results confirm that our main assumption holds

or the images used here: Given a sufficient number of
amples, the RD converges on the intrinsic dimensional-
ty of the data, and thus the entropy estimate is close to
he true entropy of the data. In the following sections, we
nvestigate extensions of these estimators to 8�8 patches
f various types of images for which there are an insuffi-
ient number of samples to directly apply the estimates.

. RESULTS FOR 8Ã8 PATCHES
n Experiment 1, patches of size 8�8 pixels were used
r=8, k=64). Each patch X= �X1 ,X2 , . . . ,X64� can thus be
iewed as a point in a 64-dimensional metric space V64

ith distance function d�X ,Y�= 
X−Y
L2
=�
i=1

64 �Xi−Yi�2.
n our experiments, each patch was a discrete-valued ran-
om vector in which each pixel was limited to integer val-
es in the range 0–255 (l=256 levels) as a result of the
-bit quantization, and therefore the actual space is lim-
ted to L= lk=25664=2512 possibilities.

. 8Ã8 Patches
o serve as a control condition, patches of size 8
8 pixels were cropped from Gaussian white-noise im-

ges. Nineteen Gaussian white-noise images were gener-
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ted as described in Subsection 2.A via Eq. (1) with �
127.5 and �=36. Three images were placed into group J,
nd the remaining 16 images were placed into group N,
esulting in 3� �1024�1024� / �8�8�=49,152 target
atches and 16� �1024�1024� / �8�8�=218=262,144 po-
ential neighbors.

To investigate the effects of spatial correlations on
earest-neighbor distances, 8�8 patches cropped from

mages with 1/ f and 1/ f2 amplitude spectra (1/ f2 and 1/ f4

ower spectra, respectively) and from images with
pectrum-equalized patches were used. In this paradigm,
he image’s DFT coefficients form a set of independent
aussian random variables with standard deviations in-
ersely proportional to spatial frequency. Nineteen 1/ f,
/ f2, and spectrum-equalized noise images of size 1024
1024 pixels were generated as described in Subsection

.A. For each image type, three images were placed into
roup J, and the remaining 16 images were placed into
roup N, resulting in 3� �1024�1024� / �8�8�=49,152
arget patches and 16� �1024�1024� / �8�8�=218

262,144 potential neighbors.
In addition, to investigate the effects of the statistical

roperties of natural scenes on nearest-neighbor dis-
ances, 8�8 patches cropped from images obtained from
he van Hateren database38 were used. Seventy-one natu-
al scenes were obtained as described in Subsection 2.A,
ve of which (chosen at random) were placed into group
, and the remaining 66 of which were placed into group
. Thus, there were a total of 81,920 target patches and a

otal of 1,081,344 potential neighbors.
Figure 9(a) depicts the proximity distribution functions

or the patches taken from the 1/ f, 1 / f2, and spectrum-
qualized noise images (gray, white, and light-gray
ircles, respectively) and from the natural scenes (stars),
long with the proximity distribution function for Gauss-
an white-noise patches (black circles). The horizontal
xis denotes the number of samples N, and the vertical
xis denotes the corresponding log nearest-neighbor dis-
ance averaged over all patches in group J.

Images that possess power spectra that follow 1/ f


emonstrate greater degrees of pairwise pixel correla-
ions for increasing values of 
. Gaussian white-noise im-
ges, which contain uncorrelated pixels, possess an am-
litude spectrum in which 
=0. The 1/ f and 1/ f2 images
ossess power spectra in which 
=2 and 
=4, respec-
ively (amplitude spectra in which 
=1 and 
=2, respec-
ively). The 8�8 patches of the spectrum-equalized noise
mages possess a power spectrum in which 
�2.8. Thus,
he proximity distribution functions of Fig. 9(a) demon-
trate that for a fixed variance, increasing pairwise corre-
ations between pixels increases the magnitude of the
lope of the proximity distribution functions, which there-
ore suggests a lower entropy state.

The data of Fig. 9(a) also show that the proximity dis-
ribution function for the patches of natural scenes lies
elow the proximity distribution function for the patches
f spectrum-equalized noise, despite the fact that the
ower spectra for these image types are equalized. These
ata confirm that the presence of spatial correlations does
ot provide a complete account for the redundancy (lower
ntropy) of natural scenes.

Figure 9(b) depicts the RD curves for these images com-
uted as the magnitude of the inverse of the instanta-
eous slope between successive pairs of measured values
f E�log2 DN

* 	 [i.e., −d log2�N� /dE�log2 DN
* 	]. The horizon-

al axis denotes the number of samples N, and the verti-
al axis denotes the corresponding dimensionality given

samples. Notice that for most values of N (in particular,
or N�16), 1/ f2 noise exhibits the lowest RD, natural
cenes exhibit a slightly greater RD than 1/ f2 noise,
pectrum-equalized noise exhibits an even greater RD,
ollowed by 1/ f noise, and then Gaussian white noise. At

=218 samples, the dimensionalities are approximately
3, 17, 27, 34, and 45 for 1/ f2 noise, natural scenes,
pectrum-equalized noise, 1/ f noise, and Gaussian white
oise, respectively. Clearly, many more samples are
eeded before these RD curves converge on the intrinsic
imensionality of k=64, and thus N=218 is an insufficient
umber of samples to produce a direct estimate of the en-
ropy via Eq. (8). In Section 4, we discuss extrapolation
echniques that attempt to overcome this limitation.

. Mean- and Contrast-Normalized 8Ã8
atches
art of the redundancy in natural scenes can be attrib-
ted to the fact that natural scenes contain many low-

ig. 9. (a) Proximity distribution and (b) RD curves for 8�8
atches. In both graphs, the horizontal axis denotes the number
f samples N. The vertical axis in (a) denotes the corresponding
�log2 DN

* 	 estimated via a sample mean over all target patches;
he vertical axis in (b) denotes the corresponding RD. Black
ircles, Gaussian white noise; gray circles, 1/ f noise; light-gray
ircles, spectrum-equalized noise; white circles, 1/ f2 noise; stars,
atural scenes. The solid gray line in (b) denotes the intrinsic di-
ensionality of k=64 for all data sets.
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ontrast regions (e.g., in sky), whereas noise images such
s spectrum-equalized noise only seldomly contain such
ow-contrast regions. To determine whether this preva-
ence of low-contrast patches can account for the differ-
nces in the proximity distribution functions, Experiment
investigated the nearest-neighbor-distance behavior of

he underlying patterns by first normalizing the image
atches for absolute luminance and RMS contrast. Spe-
ifically, each patch X was adjusted to have a zero mean
nd unity vector norm (L2 norm) via

1. XªX− �1/64�
i=1
64 Xi,

2. Xª255X /�
i=1
64 Xi

2,

here Xi denotes the ith pixel of X. Here, we limited the
nalysis to those patches with variance (after Step 1,
bove) of �1/64�
i=1

64 Xi
2�2 to prevent both division by zero

in Step 2, above) and amplification of noise.
The 1024�1024 images were randomly divided into

roups J (containing the to-be-matched, target patches)
nd N (containing the neighbors). For the Gaussian
hite-noise images, only a single standard deviation �

ig. 10. (a) Proximity distribution and (b) RD curves for mean-
nd contrast-normalized 8�8 patches. The horizontal axis in
oth graphs denotes the number of samples N. The vertical axis
n (a) denotes the corresponding E�log2 DN

* 	 estimated via a
ample mean over all target patches; the vertical axis in (b) de-
otes the corresponding RD. Black circles, Gaussian white noise;
ray circles, 1/ f noise; light-gray circles, spectrum-equalized
oise; white circles, 1/ f2 noise; stars, natural scenes. The solid
ray line in (b) denotes the intrinsic dimensionality of k=62 for
ll data sets.
36 was tested; Groups J and N consisted of 16,384 and
62,144 patches, respectively. For the 1/ f, 1 / f2, and
pectrum-equalized noise images, groups J and N con-
isted of 49,152 and 262,144 patches, respectively. For the
atural scenes, groups J and N consisted of approxi-
ately 68,000 and 900,000 patches, respectively.
Figures 10(a) and 10(b) depict the resulting proximity

istribution and RD, respectively, curves for Gaussian
hite noise (black circles), 1 / f noise (gray circles), 1 / f2

oise (white circles), spectrum-equalized noise (light-gray
ircles), and natural scenes (stars). In comparison with
he proximity distribution functions in Fig. 9(a), notice
hat the curves for these mean- and contrast-normalized
ata all demonstrate a decrease in slope, suggesting that
ore templates are needed to describe the high-contrast

atches to the same level of accuracy (vector norm of the
ifference) as that achieved when patches of all contrasts
re considered. However, notice from Fig. 10(a) that the
elative nearest-neighbor-distance behavior (rank order)
f these various curves remains intact; in particular,
atural scenes still fall below spectrum-equalized noise.
hus, the redundancy found in natural scenes cannot be

ig. 11. (a) Proximity distribution and (b) RD curves for mean-
nd contrast-normalized 8�8 patches of whitened natural
cenes and of Gaussian white noise, spectrum-equalized noise,
nd natural scenes (replotted from Fig. 10). In both graphs, the
orizontal axis denotes the number of samples N; the vertical
xis in (a) denotes the corresponding E�log2 DN

* 	 estimated via a
ample mean over all target patches; and the vertical axis in (b)
enotes the corresponding RD. Black circles, Gaussian white
oise; light-gray circles, 1/ f noise; black stars, natural scenes;
hite stars, whitened natural scenes. The solid gray line in (b)
enotes the intrinsic dimensionality of k=62 for all data sets.
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ttributed solely to the power spectrum, nor can it attrib-
ted to the combination of the power spectrum and the
revalence of low-contrast patches.
To further investigate the effects of the power spectrum

n nearest-neighbor distances, proximity distribution
unctions were measured for whitened natural scenes. To
ach of the 71 natural scenes (obtained as described in
ubsection 2.A), the following whitening filter was ap-
lied:

H�u,v� = ��u2 + v2�1.38, �11�

here u ,v� �0,1023�, and where the exponent 1.38 was
easured by linearly regressing log magnitude (of the
FT coefficients averaged over all orientations) on log fre-
uency (radial distance from zero frequency) using all 71
mages. The filtering was performed in the frequency do-

ain by means of the DFT and multiplication of spectra.
he pixel values of the resulting images were offset and
caled to span the range 0–255 and then quantized to
bits. The images chosen for groups J and N were whit-

ned versions of the same images used for these groups in
xperiment 1 and in Subsection 3.B; thus, groups J and
consisted of approximately 68,000 and 900,000 patches,

espectively.
Figures 11(a) and 11(b) depict the resulting proximity

istribution and RD curves, respectively, for Gaussian
hite noise (black circles), spectrum-equalized noise

light-gray circles), natural scenes (black stars), and whit-
ned natural scenes (white stars). The application of a
hitening filter serves to remove average pairwise spatial

orrelations; thus, if the redundancy in the high-contrast
atches of natural scenes were due solely to these corre-
ations, we would expect the nearest-neighbor-distance
ehavior of whitened natural scenes to be identical to that
f Gaussian white noise. Instead, we find the proximity
istribution function for whitened natural scenes falls be-
ow the proximity distribution function for Gaussian
hite noise, which indicates that fewer templates are re-
uired (on average) to describe a whitened natural scene
o the same level of accuracy as that achieved for Gauss-
an white noise. These data further suggest that the re-
undancy of natural scenes cannot be attributed solely to
combination of the spectrum and the prevalence of low-

ontrast patches.

. ENTROPY EXTRAPOLATIONS
XENTROPY)
or the 3�3 patches analyzed in Subsection 2.D, the RD
urves had converged to the intrinsic dimensionality of
he data �k=9�, whereas the RD curves shown in Fig. 9(b)
or the 8�8 patches requires a prohibitively large num-
er of samples to converge to a dimensionality of k=64. As
result, applying Eq. (8) using the corresponding proxim-

ty distribution data would result in a poor estimate of en-
ropy. To overcome this limitation, we explore three tech-
iques for extrapolating the proximity distribution data
nd thereby estimating entropy based on the extrapola-
ions. We define the term XEntropy to denote this ex-
rapolated entropy estimate and to reinforce the notion
hat these are only estimates of the entropy based on ex-
rapolations.
We use two constraints to aid in the extrapolations: (1)
he expected log nearest-neighbor distance is a monotoni-
ally decreasing function of the number of samples; and
2) the RD curves for r�r white noise, spectrum-
qualized noise, and natural scene patches must eventu-
lly converge to the intrinsic dimensionality of k=r2. The
rst constraint specifies that the proximity distribution is
ecessarily a monotonically decreasing function (i.e., the
lopes must be less than zero and therefore the RD func-
ions must be greater than zero). The second constraint
pecifies that for 8�8 patches, the RD curves will even-
ually converge to a value of 64. Thus, we extrapolate the
roximity distribution data by extrapolating the corre-
ponding RD data.

Figure 12 depicts the RD curves for 8�8 patches of
aussian white noise, spectrum-equalized noise, and
atural scenes. The RD curves for spectrum-equalized
oise and natural scenes are replotted from Fig. 9(b). The
D curve for Gaussian white noise (indicated by the black
urve in Fig. 12) was computed via Eq. (10) for N
�1,250�, and the remainder of the curve was fitted with
D�N�=−�log N+b0�2 / �a2�log N�2+2a2b0 log N+a1b0−a0�,
here the parameters a2=−1/64, a1=4.13, a0=65.05, and

0=13.02 were computed via the Nelder–Mead simplex
ethod.45 The form of this function is by no means opti-
al; it was chosen (1) for its relative simplicity (it is a ra-

ional function in log N); (2) for the fact that in the limit of
arge N, RD�N�=1/a2=64; and (3) because it provides de-
ent fits to all three data sets (noise, spectrum-equalized
oise, and natural scenes). However, although we believe
hat this is a rational extrapolation, we also believe that
uture work will allow more theoretically accurate predic-
ions. In particular, we believe that it is possible to use
he known statistics (e.g., the power spectra) to guide the
ounds of the extrapolations. The corresponding entropy
stimate for Gaussian white noise obtained by using Eq.

ig. 12. RD curves for 8�8 Gaussian white noise (black curve),
pectrum-equalized noise (light-gray circles), and natural scenes
stars). The RD curve for the Gaussian white noise was computed
t values of N� �1,250� via Eq. (10), and the remainder of the
urve was fitted with relativedimensionality�N�=−�log N
b0�2 / �a2�log N�2+2a2b0 log N+a1b0−a0�, where a2=−1/64, a1
4.13, a0=65.05, and b0=13.02 were computed via the Nelder–
ead simplex method. The data for the spectrum-equalized noise

nd natural scenes are replotted from Fig. 9(b). The solid gray
ine denotes the intrinsic dimensionality of k=64 for all data
ets.
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8) with k=64 and N=2300 yields a value of 449 bits
7.0 bits/pixel�; the actual entropy computed via Eq. (9) is
62 bits �7.2 bits/pixel�.
In the following sections, we assume three different

orms of the RD curves of spectrum-equalized noise and
atural scenes—form A, form B, and form C—which give
ise to three corresponding techniques for extrapolating
he proximity distribution data and thereby give rise to
hree entropy estimates. These extrapolated entropy esti-
ates are denoted as XEntropy A, XEntropy B, and XE-

tropy C, respectively. We describe each of these extrapo-
ation techniques so as to make explicit how different
ssumptions can lead to different estimates of entropy. Al-
hough XEntropy A and XEntropy B provide useful upper
ounds with simple assumptions, we believe our best es-
imates of the true entropy are derived from XEntropy C.
owever, we are also confident that future work can im-
rove on these estimates.

. XEntropy A
orm A of the RD curves for spectrum-equalized noise and
atural scenes assumes that the curves follow a straight

ine (in log N) until they reach a dimensionality of 64 and

ig. 13. (a) RD curves and (b) proximity distribution functions
or 8�8 Gaussian white noise (black curve), and (a) extrapolated
D and (b) proximity distribution curves for spectrum-equalized
oise (gray circles) and natural scenes (stars) by assuming form

of the RD curves. Under from A, the RD curves follow a
traight line (in log N) until they hit the dimensionality value of
4.
hereafter remain at that value. Figure 13(a) depicts the
esulting RD curves under this assumption. The linear
ortion of each extrapolated RD curve was obtained by fit-
ing the last five measured data points with a first-degree
olynomial in log N: RD�N�=1.13 log N+6.45 for
pectrum-equalized noise, RD�N�=0.94 log N−0.19 for
atural scenes. The resulting extrapolated proximity dis-
ribution functions are shown in Fig. 13(b).

Figure 14 shows the entropy estimate for Gaussian
hite noise (449 bits; 7.0 bits/pixel) and extrapolated en-

ropy estimates (XEntropy A) for spectrum-equalized
oise and natural scenes computed by using Eq. (8) with
=64 and N=2300. For spectrum-equalized noise, the XE-
tropy A is 344 bits �5.4 bits/pixel�; the actual entropy is
28 bits [5.1 bits/pixel; computed via Eq. (9); see Ref. 44].
or the sample of natural scenes used here, XEntropy A is
12 bits �3.3 bits/pixel�.

. XEntropy B
orm B of the RD curves for spectrum-equalized noise
nd natural scenes assumes that the curves follow a
traight line (in log N) until they intersect with the RD
urve for Gaussian white noise, whereupon all subse-
uent RD values are equivalent to the RD values for
aussian white noise. Figure 15(a) depicts the resulting
D curves under this assumption; the linear portion of
ach extrapolated RD curve was obtained as described in
ubsection 4.A. The resulting extrapolated proximity dis-
ribution functions are shown in Fig. 15(b). Essentially,
Entropy B relies on the idea that the slowest possible

alloff in the proximity distribution occurs for Gaussian
oise. Therefore, if we assume that the proximity distri-
ution for natural scenes does not decrease any faster
hat that determined by the linear portion in Fig. 15(a),
hen XEntropyB provides an upper bound on the entropy.
e believe this is a rational assumption and provides a

lear bound. However, as we will demonstrate in the fol-
owing section, we believe that we can provide an extrapo-
ation that provides a more accurate estimate.

ig. 14. Entropy estimate for Gaussian white noise and ex-
rapolated entropy estimates (XEn curves) assuming form A of
he RD curves (XEntropy A) for spectrum-equalized noise and
atural scenes. The entropy estimates computed by using Eq. (8)
ith k=64 and N=2300 are 5.4 bits/pixel and 3.3 bits/pixel for

pectrum-equalized noise and natural scenes, respectively; the
rue entropy of spectrum-equalized noise computed via Eq. (9) is
.1 bits/pixel.
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Figure 16 shows the entropy estimate for Gaussian
hite noise replotted from Fig. 14 (449 bits;
.0 bits/pixel) and the extrapolated entropy estimates
XEntropy B) for spectrum-equalized noise and natural
cenes computed by using Eq. (8) with k=64 and N=2300.
or spectrum-equalized noise, XEntropy B is 337 bits

5.3 bits/pixel�; the actual entropy is 328 bits [
.1 bits/pixel; computed via Eq. (9)]. For the sample of
atural scenes used here, XEntropy B is 206 bits
3.2 bits/pixel�.

. XEntropy C
hile the previous two measures provide upper bounds

n the entropy, XEntropy C incorporates our best at-
empts to extrapolate to the true entropy of the data.
orm C of the RD curves for spectrum-equalized noise
nd natural scenes assumes that the curves are described
y the same functional form as the RD curve for Gaussian
hite noise,

RD�N� = − �log N + b0�2/�a2�log N�2 + 2a2b0 log N + a1b0 − a0�,

�12�

ig. 17. (a) RD curves and (b) proximity distribution functions
or 8�8 Gaussian white noise (black curve), and (a) extrapolated
D and (b) proximity distribution curves for spectrum-equalized
oise (gray circles) and natural scenes (stars) by assuming form
of the RD curves. Under form C, the RD curves assume the

ame functional form as the RD curve for Gaussian white noise
Eq. (12)], where a2=−1/64, a1=4.13, a0=65.05, and the param-
ter b0 was adjusted to fit the measured data (b0=10.88 for
pectrum-equalized noise, b =8.10 for natural scenes).
ig. 15. (a) RD curves and (b) proximity distribution functions
or 8�8 Gaussian white noise (black curve), and (a) extrapolated
D and (b) proximity distribution curves for spectrum-equalized
oise (gray circles) and natural scenes (stars) by assuming form

of the RD curves. Under form B, the RD curves follow a
traight line until they intersect with the RD curve for Gaussian
hite noise, whereupon all subsequent RD values are equivalent

o the RD values for Gaussian white noise.
ig. 16. Entropy estimate for Gaussian white noise and ex-
rapolated entropy estimates (XEn curves) assuming form B of
he RD curves (XEntropy B) for spectrum-equalized noise and
atural scenes. The entropy estimates computed by using Eq. (8)
ith k=64 and N=2300 are 5.3 bits/pixel and 3.2 bits/pixel for

pectrum-equalized noise and natural scenes, respectively; the
rue entropy of spectrum-equalized noise computed via Eq. (9) is
.1 bits/pixel.
 0
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here a2=−1/64, a1=4.129, a0=65.05, and the parameter
0 was adjusted to fit the measured data. For spectrum-
qualized noise b0=10.88, and for natural scenes b0
8.10 as determined by the Nelder–Mead simplex
ethod. Figure 17(a) depicts the resulting RD curves un-

er this assumption. The resulting extrapolated proxim-
ty distribution functions are shown in Fig. 17(b).

Figure 18 shows the entropy estimate for Gaussian
hite noise replotted from Fig. 14 (449 bits;
.0 bits/pixel) and extrapolated entropy estimates (XEn-
ropy C) for spectrum-equalized noise and natural scenes
omputed by using Eq. (8) with k=64 and N=2300. For
pectrum-equalized noise, XEntropy C is 324 bits
5.1 bits/pixel�, which is very close to the actual entropy
f 328 bits [5.1 bits/pixel; computed via Eq. (9)]. For the
ample of natural scenes used here, XEntropy C is
84 bits �2.9 bits/pixel�.
In summary, among the three extrapolation techniques

xamined here, we believe that XEntropy C provides the
est estimate of entropy. Clearly, a goal of future research
s to improve on both the accuracy and robustness of these
stimates. Furthermore, the XEntropy C estimate of
84 bits �2.9 bits/pixel� is dependent on the particular
ample of images used here. A more extensive sample of
atural scenes will certainly give rise to a better estimate
f the entropy of natural scenes.

. OTHER PATCH SIZES
n the previous experiments, patches of size 8�8 pixels
ere used. To investigate the effects of patch size on en-

ropy, we measured proximity distribution functions for
6�16 patches of Gaussian white noise and natural
cenes. Indeed, if the 8�8 subpatches of a 16�16 patch
re independent, then one would expect the entropy of the
6�16 patches to be 4 times greater than that of the 8
8 patches. Furthermore, if the subpatches are indepen-

ent, then we would expect the relative dimensionality
or a given proximity to increase by a factor of 4 by dou-

ig. 18. Entropy estimate for Gaussian white noise and ex-
rapolated entropy estimates (XEn curves) assuming form C of
he RD curves (XEntropy C) for spectrum-equalized noise and
atural scenes. The entropy estimates computed by using Eq. (8)
ith k=64 and N=2300 are 5.1 bits/pixel and 2.9 bits/pixel for

pectrum-equalized noise and natural scenes, respectively; the
rue entropy of spectrum-equalized noise computed via Eq. (9) is
.1 bits/pixel.
ling the size of the patch (e.g., the RD of 16�16 patches
t a given proximity would be 4 times the RD of 8�8
atches at that same proximity).
Figure 19(a) depicts the proximity distribution func-

ions for patches of size 8�8 (black circles) and 16�16
white circles) selected from Gaussian white-noise images
reated with �=36 (see Section 2). The proximity distri-
ution function for the 8�8 patches has been offset such
hat the average log nearest-neighbor distance is 5.0 at
=1; accordingly, the proximity distribution function for

he 16�16 patches has been offset to maintain the rela-
ive vertical displacement between curves. Also shown in
ig. 19(a) (as solid curves) are the predicted proximity
istribution functions that would result if the 8�8 sub-
atches of the 16�16 patches were statistically indepen-
ent (i.e., requiring 4 times as many samples to achieve
he same nearest-neighbor distances as those obtained
sing the 8�8 patches). Notice that the actual proximity
istribution function for the 16�16 Gaussian white-noise
atches is very much in agreement with the predicted
roximity distribution function, which confirms that the
aussian white-noise subpatches are indeed indepen-
ent.
Figure 19(b) depicts the proximity distribution func-

ions for patches of size 8�8 (black circles) and 16�16

ig. 19. Proximity distribution functions for patches of size 8
8 (black circles) and 16�16 (white circles). (a) Data for Gauss-

an white noise; (b) data for natural scenes. The solid black
urves in each graph denote the proximity distribution functions
hat would result if the 8�8 subpatches were statistically inde-
endent (thus requiring 4 times the entropy of 8�8 patches to
escribe a 16�16 patch). Note that the predicted curves have
een vertically offset to match their corresponding data.
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white circles) selected from the natural scenes (see Sec-
ion 2). The proximity distribution function for the 8�8
atches has been offset such that the average log nearest-
eighbor distance is 5.0 at N=1, and the proximity distri-
ution function for the 16�16 patches have been offset to
aintain the relative vertical displacement between

urves. Figure 19(b) also shows (as solid curves) the pre-
icted proximity distribution functions that would result
f the 8�8 subpatches were independent. Whereas in the
aussian noise condition where the actual proximity dis-

ribution function for the 16�16 patches was similar to
he corresponding proximity distribution function pre-
icted assuming independence, here we see that the ac-
ual proximity distribution function is substantially lower
han the proximity distribution function predicted assum-
ng independence. These data demonstrate that the 8�8
ubpatches of the 16�16 patches are not independent;
ather, natural scenes demonstrate a marked statistical
ependency across space.

ig. 20. Proximity distribution functions for patches of size 8
8 (black circles) and 16�16 (white circles) in which each patch
as mean and contrast normalized as described in Subsection
.B. (a) Data for Gaussian white noise; (b) data for natural
cenes. The solid black curves in each graph denote the proximity
istribution functions that would result if the 8�8 subpatches
ere statistically independent (thus requiring 4 times the en-

ropy of 8�8 patches to describe a 16�16 patch). Note that the
redicted curves have been vertically offset to match their corre-
ponding data.
Figures 20(a) and 20(b) show corresponding data mea-
ured for mean- and contrast-normalized patches (see
ubsection 3.B) of size 8�8 and 16�16 pixels. Observe in
ig. 20(a), which depicts the results for Gaussian white-
oise patches, that the 8�8 high-contrast subpatches are
early independent; i.e., the actual proximity distribution
unction for the high-contrast 16�16 patches (white
ircles) is similar to the proximity distribution functions
redicted assuming independence (solid curves). How-
ver, as shown in Fig. 20(b), the data obtained for high-
ontrast natural-scene patches give rise to a proximity
istribution function that is markedly lower than the
roximity distribution function predicted assuming inde-
endence. These data suggest that the high-contrast pat-
erns found in natural scenes demonstrate a statistical
ependency across space.
Unfortunately, extrapolation of the proximity distribu-

ion for the 16�16 patches is more problematic than for
he 8�8 patches because the 16�16 RD curve is very far
rom converging on the intrinsic dimensionality of 256.
owever, if we assume that for numbers of samples be-

ond that measured ��218�, the remaining portion of the
roximity distribution for the 16�16 patches continues
s if the 8�8 subpatches were independent, then we ob-
ain an estimate of 567 bits �2.2 bits/pixel� for the en-
ropy of the 16�16 natural-scene patches. Clearly, ob-
aining sufficient numbers of samples to extrapolate the
roximity distributions for larger patches proves quite
ifficult. Although we expect further reductions in the en-
ropy rate (bits/pixel) for larger patches, the ultimate en-
ropy one obtains with larger patches (e.g., 256�256) will
e a function of both the image content and the noise in
he signal.

. DISCUSSION
n this paper, we have used proximity distributions to in-
estigate the entropy and dimensionality of natural
cenes. In general, the technique employed here requires
ar fewer samples than that required for directly estimat-
ng the probability distribution and thereby estimating
ntropy. For example, for 3�3 patches that follow a uni-
orm distribution, at least 272 samples would be required
o measure the probability distribution and thereby mea-
ure entropy. However, as the dimensionality grows, and
ven for 8�8 patches, nearest-neighbor-based techniques
oo require a prohibitively large number of samples. Al-
hough we have proposed three methods of extrapolation,
erifying and improving the accuracy of the extrapola-
ions is certainly an area that requires further investiga-
ion. Still, by comparing the entropy estimates of different
mage types, we can gain insight into the contributions of
arious forms of redundancy to the entropy.

It is generally accepted that the intensity values of im-
ges drawn from the natural environment possess a de-
ree of statistical redundancy. Several factors contribute
o this redundancy: (1) Natural scenes typically demon-
trate 1/ f
 power spectra (1/ f
/2amplitude spectra) where
is typically in the range of 1.4 to 2.8. The dominance of

ow spatial frequencies in natural scenes implies slow
patial changes in intensity, and thus neighboring inten-
ity values are spatially correlated. (2) The local structure
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n natural scenes is non-Gaussian; rather, marginal prob-
bility distributions of discrete cosine transform and dis-
rete wavelet transform coefficients are typically well
odeled by using a leptokurtotic generalized Gaussian

ensity.46 (3) The local mean luminance and local lumi-
ance contrast in natural scenes follow a non-Gaussian
istribution; many of the patches drawn from natural
cenes are devoid of significant contrast.

Although these forms of redundancy have been well
tudied, there remains the question of how much of the
edundancy of images is attributable to each form. Ac-
ordingly, in addition to natural scenes, we have mea-
ured the entropy of patches of Gaussian white noise and
atches of spectrum-equalized noise; and we have mea-
ured the entropy of mean- and contrast-normalized ver-
ions of all image types. This approach of normalizing the
mages according to different parameters provides insight
nto how these different forms of redundancy contribute
o the entropy.46

. Effects of Spatial Correlations
uch of the redundancy in natural scenes is commonly

ttributed to correlations described by the power (ampli-
ude) spectra. Clearly, data that are spatially correlated
re also redundant. However, the reverse is not true:
ata that are redundant need not be correlated; rather,

he redundancies can arise from other forms of statistical
ependence. Indeed, several investigators have shown
hat the statistical dependencies in natural scenes arise
rom more than just the spatial correlations.1,4,5,7,8

Here, we have measured the entropy of 3�3 patches of
aussian noise, 3�3 patches of natural scenes, and 3
3 patches of Gaussian noise with a power spectrum

quivalent to that of natural scenes (spectrum-equalized
oise). In addition, we have provided an extrapolated es-
imate of entropy (XEntropy) of 8�8 patches of these
hree image types. For the spectrum-equalized noise, the
eal and imaginary components of each DFT coefficient of
he spectrum-equalized noise were drawn from a Gauss-
an distribution with standard deviation equivalent to the
tandard deviation measured for the corresponding Fou-
ier components of the natural scenes. Thus, the
pectrum-equalized noise and natural scenes possess the
ame power spectrum, although the distributions of local
ean, contrast, and frequency components remained

nique for each image type.
For 3�3 patches of Gaussian white noise, the entropy

as estimated to be 63 bits �7.2 bits/pixel�; this entropy is
quivalent to that computed directly via Eq. (9). For 3
3 patches of spectrum-equalized noise, the entropy was

stimated to be 49 bits �5.5 bits/pixel�, which is also
quivalent to the entropy computed directly via Eq. (9).
or 3�3 patches of the natural scenes used here, the en-
ropy was estimated to be 35 bits �3.9 bits/pixel�. These
esults reveal that for the sample of natural scenes used
ere, 3�3 natural scenes have approximately 71% the
ntropy of 3�3 images with the same power spectra but
andom phase spectra.

For 8�8 patches of Gaussian white noise, our
Entropy C estimate was 449 bits �7.0 bits/pixel�; the ac-

ual entropy computed via Eq. (9) was 462 bits
7.2 bits/pixel�. The XEntropy C estimate for 8�8
atches of spectrum-equalized noise was 324 bits
5.1 bits/pixel�, which is very close to the actual entropy
f 328 bits �5.1 bits/pixel� computed via Eq. (9). The
Entropy C estimate for 8�8 patches of natural scenes
as 184 bits �2.9 bits/pixel�. Although there are certainly

imitations to these extrapolated measures, these results
uggest that for the sample of natural scenes used here,
�8 natural scenes have approximately 57% the entropy
f 8�8 images with the same power spectra but random
hase spectra.

. Effects of Local Mean and Contrast
n addition to the characteristic power spectrum, natural
cenes also exhibit non-Gaussian distributions of local
ean luminance and local luminance contrast. As we
oted, patches drawn from natural scenes are often de-
oid of significant contrast. These factors also contribute
o the statistical redundancy (reduced entropy) of natural
cenes. Accordingly, in Subsection 3.B, we also examined
he nearest-neighbor-distance behavior of mean- and
ontrast-normalized 8�8 patches to investigate the en-
ropy of the underlying patterns found in natural scenes
ithout regard to the absolute luminance or RMS con-

rast.
By normalizing for RMS contrast, the absolute entropy

epends on the contrast (variance) to which the data are
ormalized. Accordingly, here we report entropy esti-
ates relative to the entropy of the mean- and contrast-
ormalized Gaussian white noise. By applying the XEn-
ropy C extrapolation to the mean- and contrast-
ormalized proximity distribution functions, we find that
or the sample of natural scenes used here, 8�8 high-
ontrast patches of natural scenes have approximately
7% of the entropy of 8�8 high-contrast patches of
aussian white noise, and 8�8 high-contrast patches
ith the same power spectrum as that of 8�8 natural

cenes have approximately 87% of the entropy of 8�8
igh-contrast patches of Gaussian white noise. Further-
ore, 8�8 high-contrast patches of natural scenes have

pproximately 77% of the entropy of 8�8 high-contrast
atches with the same power spectra but random phase
pectra.

. Relative Dimensionality
s mentioned in Section 1, there exists a wide body of re-
earch geared toward measuring intrinsic
imensionality28–34 (see Ref. 35 for a review). Here, we
ave emphasized the RD of the data as a function of the
ampling density. Our main assumption is that, given a
ufficiently large number of samples, the RD converges on
he intrinsic dimensionality. We have measured the RD of
�3 and 8�8 patches of Gaussian white noise,
pectrum-equalized noise, and natural scenes, as well as
he RD of 8�8 patches of 1/ f and 1/ f2 noise.

For 3�3 patches (Subsection 2.D), the RD curves for
aussian white noise, spectrum-equalized noise, and
atural scenes all converge on the same (intrinsic) dimen-
ionality of 9, but the curves converge at different rates.
pecifically, for samples sizes �217, natural scenes appear

ower dimensional than both Gaussian white noise and
pectrum-equalized noise (at corresponding sample sizes),
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nd spectrum-equalized noise appears lower dimensional
han Gaussian white noise (at corresponding sample
izes).

For 8�8 patches (Subsection 3.A), our extrapolations
re derived from the assumption that the RD curves con-
erge on a value of 64 given a sufficiently large number of
amples. For samples sizes �218, 1/ f2 noise appears to be
ower dimensional than natural scenes, natural scenes
ppear lower dimensional than spectrum-equalized noise,
pectrum-equalized noise appears lower dimensional
han 1/ f noise, and 1/ f noise shows lower dimensionality
han Gaussian white noise. These ranks are approxi-
ately maintained for mean- and contrast-normalized 8
8 patches (Subsection 3.B) with the exception that

iven N�210 samples, natural scenes appear lower di-
ensional than 1/ f2 noise.
In contrast to dimensionality-reduction techniques

uch as principal components analysis or more recently
eveloped nonlinear techniques,33,34 RD does not specify a
articular technique for representing the data given a
xed number of dimensions (e.g., unrolling the Swiss
oll), nor does it provide information regarding what the
imensions represent. Instead, the RD of a data set speci-
es only the dimensionality the data appear to have given
he particular sampling density (i.e., the number of
amples). Clearly, this RD depends on the technique used
o explore the data space; e.g., RD is linked to the sam-
ling method and to the metric used to measure the dis-
ance between samples. Here, we have measured RD by
sing what is arguably one of the simplest approaches:
easuring the average (log) distance to the single nearest

eighbor for samples drawn randomly from the space.
ther techniques, such as using the k nearest neighbors

k�1� or using a more uniform sampling technique, may
ery well lead to different RDs.

However, regardless of the approach used to measure
D, the primary utility of the RD curve is its ability to
pecify the maximum number of samples required to re-
onstruct the geometry of the data space. Namely, when
he RD curve of a data set has converged to the intrinsic
imensionality of the data, there are a sufficient number
f samples to uniquely specify the space. Performing the
ctual reconstruction of the space from those samples is a
ask suitable for other algorithms.33,34

. Other Estimates of the Entropy of Natural Scenes
revious researchers have applied different approaches to

nvestigate the entropy of natural images. Parks47 em-
loyed a variant of Shannon’s classical guessing game in
hich human subjects were used as optimal predictors to
stimate the entropy of half-tone (binary) images; the en-
ropy of these binary images was estimated to be approxi-
ately 0.3 bits/pixel. Tzannes et al.48 used a similar tech-
ique to estimate the entropy of 3-bit images; the entropy

n Ref. 48 was estimated to be 1.6 bits/pixel. These
sychophysical-based approaches were later extended by
ersten3 to estimate the entropy rate of 4-bit images;
ersten estimated lower and upper bounds on entropy

ates of approximately 0.8 and 1.5 bits/pixel, respectively.
Other computational approaches have also been used

o investigate the information content in natural scenes.
ia a Voronoi tessellation of the space of zero-mean
ontrast-normalized 3�3 patches, Lee et al.49 have re-
orted that both natural scenes and range images occupy
nly a small fraction of the surface area of the 7-sphere.
ore recently, Costa and Hero50 have developed a mea-

ure of Renyi entropy that was used to estimate the en-
ropy of images from the Yale Face Database.

Here, we have used a nearest-neighbor-based tech-
ique and an extrapolation (XEntropy C) to estimate an
ntropy of 184 bits for 8�8 patches of natural scenes. Al-
hough differences in patch size and luminance resolution
ake it difficult to perform a direct comparison of our re-

ults with previous estimates, maximum-quality JPEG
ompression (which is a block-based strategy that oper-
tes on 8�8 blocks) provides an average bit rate of
.1 bits/pixel (263 bits per 8�8 patch) for the natural
cenes used in this study, a value which is 42% greater
han our estimate of entropy.

Of course, knowledge of the entropy of 8�8 patches
oes not immediately reveal the entropy of larger-sized
mages (e.g., images of size 512�512 pixels) unless the
�8 patches within the larger-sized images are statisti-
ally independent. Still, one can use the entropy of 8�8
atches to bound the entropy of larger-sized images.
amely, if h�X8�8� is the entropy of 8�8 patches of some

mage class, then the entropy of an N�N image of that
lass �N�8� is given by h�XN�N�� �N /8�2h�X8�8�, with
quality if the 8�8 patches are independent.

. Other Applications
he application of nearest-neighbor-based techniques to
stimating entropy and dimensionality is not limited to
atural scenes. Victor19 has applied the technique to esti-
ate the entropy of neural spike trains. Kraskov et al.20

as applied a related technique to estimate the mutual in-
ormation in both gene expression data and ECG signals.
ybic41 has proposed a related estimate of mutual infor-
ation for image registration applications. We do, how-

ver, wish to note that the estimated entropy is only one
omponent of the analysis in this paper. We believe the
ull proximity distributions described here provide impor-
ant insights into the data that go beyond the one number
escribed by the estimated entropy.
We are currently developing extensions of the tech-

iques presented here to investigate the amount of addi-
ional information provided by color images (in compari-
on with luminance-only images); the amount of
nformation provided by the phase spectrum, including

easurements of the mutual information between the
ower and the phase spectra of natural scenes; and the
mount of information in natural paintings. In addition,
e are investigating the application of the techniques
resented here to other types of signals, including natural
ounds and video.

Nearest-neighbor-based techniques also have a long
istory in the field of pattern classification (see Refs. 51
nd 52). Indeed, the entropy of a data set is clearly re-
ated to the difficulty of classifying data from the set. We
elieve the use of proximity distributions for natural
cenes will prove useful for understanding scene classifi-
ation and can provide insights into the differences be-
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ween two images classes. We are currently investigating
he use of proximity distributions for classification pur-
oses.
In theory, the techniques described here can be applied

o a wide range of data types. However, it must be
tressed that the techniques rely on the assumption that
iven a sufficient number of samples, the proximity dis-
ribution converges to a linear function of the (log) num-
er of samples; i.e., the quantity −d log2�N� /dE�log2 DN

* 	
s equivalent to the intrinsic dimensionality of the data
or sufficiently large N. Clearly, there exist forms of data
or which this assumption does not hold or for which the
otion of distance is difficult to quantify (e.g., language),
nd thus a goal of future research might involve modifi-
ations of nearest-neighbor-based techniques and/or the
evelopment of proper distance metrics for these types of
ata.

. CONCLUSIONS
his paper presented the results of three experiments
erformed to investigate the entropy and dimensionality
f natural scenes. Nearest-neighbor distances were mea-
ured for a large collection of samples drawn from various
ypes of images, and the resulting proximity distributions
ere used to examine the entropies and RDs of the image

ypes.
Our current results indicate that 8�8 natural-scene

atches have less than half the entropy of 8�8 Gaussian
hite-noise patches. This reduction in entropy cannot be
ttributed solely to the power spectrum, nor can it be at-
ributed to the prevalence of low-contrast patches. Fur-
hermore, the ratio of entropy to patch size decreases with
ncreasing size, suggesting that natural scenes demon-
trate a statistical dependency across space. In addition,
iven N=218 samples, 8�8 natural-scene patches exhibit

RD that is substantially less than the RD of 8�8
aussian white-noise patches.
The techniques presented here require far fewer

amples than that required to estimate the entropy by
rst estimating the full probability distribution; however,
he presented techniques still possess several limitations.
n particular, for the images tested here, even 3�3
atches required roughly 217 samples to obtain accurate
stimates of entropy. Although 217 samples is not compu-
ationally prohibitive, often one does not have access to
his many samples. Furthermore, for 8�8 patches, ex-
rapolations of the data were required; these extrapola-
ions relied on the fact that the RD curves eventually con-
erged on the intrinsic dimensionality of the data, and
herefore the extrapolations require knowledge of this in-
rinsic dimensionality. However, even in those cases
here the data have not converged and extrapolations are

entative, the proximity distribution provides important
nsights into the underlying forms of redundancy. By com-
aring these distributions for different signal classes (e.g.,
hose with the same power spectra), we can gain insights
nto the relative contribution of different forms of redun-
ancy.
We certainly do not want to imply that this technique

rovides a definitive answer to the entropy question. Fu-
ure research in this area will certainly lead to improved
ethods of extrapolation and consequently lead to im-
roved estimates of entropy. However, we believe the re-
ult provides a new approach to estimate entropy and di-
ensionality in complex data sets. Our results have so far

een limited to relatively small patches, but we believe
hat with some basic assumptions, we can estimate ratio-
al bounds on the entropy for much larger data sets.
verall, we hope this approach will provide insights into
oth the fundamental limits of compression as well as the
uestion of how different statistical properties relate to
he total redundancy that exists in complex data sets.
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