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Abstract

Patterns of spontaneous activity in the developing retina, LGN, and cortex are necessary for the proper development of
visual cortex. With these patterns intact, the primary visual cortices of many newborn animals develop properties similar to
those of the adult cortex but without the training benefit of visual experience. Previous models have demonstrated how V1
responses can be initialized through mechanisms specific to development and prior to visual experience, such as using
axonal guidance cues or relying on simple, pairwise correlations on spontaneous activity with additional developmental
constraints. We argue that these spontaneous patterns may be better understood as part of an ‘‘innate learning’’ strategy,
which learns similarly on activity both before and during visual experience. With an abstraction of spontaneous activity
models, we show how the visual system may be able to bootstrap an efficient code for its natural environment prior to
external visual experience, and we continue the same refinement strategy upon natural experience. The patterns are
generated through simple, local interactions and contain the same relevant statistical properties of retinal waves and
hypothesized waves in the LGN and V1. An efficient encoding of these patterns resembles a sparse coding of natural images
by producing neurons with localized, oriented, bandpass structure—the same code found in early visual cortical cells. We
address the relevance of higher-order statistical properties of spontaneous activity, how this relates to a system that may
adapt similarly on activity prior to and during natural experience, and how these concepts ultimately relate to an efficient
coding of our natural world.
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Introduction

The classic debates of nature vs. nurture, or innate vs. learned, are

pervasive in the literature of early visual development. A variety of

studies have shown that the visual system requires external

experience to mature (e.g., [1–3]). On the other hand, many

animals are able to see at birth, and have a functioning primary

visual cortex even before eye opening (e.g., [4,5]). It might seem

straightforward to assign the properties found at birth to be innate

and the properties dependent on visual experience to be learned.

However, a strict dichotomy may unnecessarily limit our integrated

understanding of visual development. In particular, we wish to focus

on the issue of a form of learning that occurs before birth on patterns

of activity that are generated internally. It is well known that

spontaneous endogenous activity is necessary, or permissive, for the

proper development of the visual system (see [6] for review). The

point of this paper is to discuss the statistical aspects of this activity

that may be sufficient, or instructive, to guide development in much

the same way that visual experience refines the mature visual system.

Essentially we propose an ‘‘innate learning’’ approach which

prepares the system for later experienced-based refinement – a

diplomatic balance between nature and nurture.

Several Studies have shown that in the early stages of rat visual

development, retinal neurons are spontaneously active and

correlated in their bursting patterns of activity [7,8]. Later, these

retinal wave patterns were recorded from many animals by

calcium imaging in the developing retina [6,9], with one example

shown in figure 1A. Experiments since then have manipulated

these waves by abolishing them, over-stimulating them, or

otherwise altering their properties and have shown how they are

necessary for proper development [10–15]. Several models have

been proposed for the production of these waves [16–18]. For the

two most recent models, cholinergic amacrine cells mediate this

activity with general agreement about the mechanism. Neurons

begin bursting spontaneously, while neighboring cells can be

recruited if enough cells in the local area are also bursting. With

such rules for wave formation and propagation, biologically

plausible models of retinal wave formation have been able to

create complex images, such as those in figure 1B.

Although retinal spontaneous activity has been well studied,

many areas beyond the retina exhibit patterned, spontaneous

neural activity. In the visual system, both the LGN [19] and V1

[20–22] have patterned, spontaneous activity during development.

The effects on LGN and V1 connectivity have been analyzed

functionally by layer segregation and orientation column forma-

tion [23,24]. Patterned, spontaneous activity is also known to

occur in the developing auditory system and is necessary for

proper development [25,26]. Similar developmental mechanisms

are also found in hippocampus [27–29] and spinal cord [30,31].

From a biophysical perspective it has been shown that spontane-

PLoS Computational Biology | www.ploscompbiol.org 1 August 2008 | Volume 4 | Issue 8 | e1000137



ous neural activity is necessary to mediate many mechanistic

effects such as axon branching [32], dendritic patterning [33], and

synaptic pruning [23,34]. With the ubiquity of spontaneous

activity in development and its ability to affect various aspects of

neural connectivity, understanding the general role of spontaneous

activity in early visual development is likely to have implications

beyond vision.

In adult primary visual cortex, it has been known for nearly half

a century that V1 cells respond strongly to bars and edges [35]

with later experiments demonstrating that simple cells in V1 have

a characteristic filter description much like a 2D gabor function

[36,37] as shown in figure 2A. The V1 cell has specific elongated

subregions of visual space where relatively bright or dark parts in

the visual image will stimulate the cell. Note that this character-

ization is purely descriptive as a stimulus-response paradigm by

answering ‘‘what’’ the neuron responds to instead of ‘‘why’’ the

filters have that appearance. According to the efficient coding

hypothesis, the role of the early visual system is to remove

statistical redundancy in the visual code [38,39]. From this

hypothesis, one way to understand the visual system is to develop

and analyze a visual encoding scheme to remove the redundancy

in images of natural scenes. This was done using sparse coding

[40] and independent components analysis (ICA) [41] on a set of

natural images – pictures of rocks, trees, forest scenes, etc... The

derived filters resemble the 2D gabor filters found in V1 simple

cells – see figure 2B-C. One can conclude from these results that

V1 is developed and tuned to efficiently encode the visual world.

In this paper, we make the claim that there is a parsimonious

computational reason for the existence of spontaneous patterns - a

functional strategy that the early visual system can employ to guide

this development both prior to and throughout experience. In

addition to molecular guidance cues we believe the visual code is

refined from training on patterns of spontaneous activity during

development in a similar manner to how the juvenile animals

refine the visual code on statistical patterns found in natural

images. Many statistical structure models rely on the pairwise

correlations between neighboring units (also known as second-

order statistics) – an implicit assumption in other functional

descriptions of spontaneous activity [42–47]. However, many

efficient coding models applied to natural images, such as sparse

coding and ICA, rely on statistics beyond pairwise correlations. In

fact, often as a first step these correlations are removed in a process

known as decorrelation or ‘‘whitening’’ (e.g., [40,41,48]); a process

that at least in part is considered a function of retinal ganglion cells

[49] (see [50] for a discussion). Although the developmental

activity patterns are known to have relevant pairwise correlations,

we argue receptive field refinement may also rely on higher-order

statistics – thus bridging the gap between models of sparse,

efficient coding and spontaneous activity.

We will demonstrate that simple patterns of activity can be used

as training images for refining the visual code. The patterns we use

resemble the only 2D imaged spontaneous activity available –

retinal waves; this is demonstrated in figure 1, with specific

examples of our generated patterns in figure 1D. Beyond a visual

resemblance, our pattern generation technique also abstracts from

the general properties and parameters of the current retinal wave

models. We strongly note, however, that this is strictly not a retinal

wave model but an abstraction of what we believe are the essential

features of the relevant endogenous activity. We are more

Figure 1. Experimental and theoretical 2D spontaneous
activity images. (A) Experimental wave propagation: calcium imaging
of a retinal wave (data as described in [9]). (B) Physiological model wave
propagation: the ganglion cell layer activation of a retinal wave model
(data from model described in [17]). (C) Physiological model wave
extent: simulated retinal wave propagated to fullest extent (adapted
from [18]). (D) Abstract model wave extent: a pattern generated by the
technique used in this paper with parameters (p = 0.55, r = 3, t = 6) as
detailed in the methods section.
doi:10.1371/journal.pcbi.1000137.g001

Author Summary

Before many animals first open their eyes, neurons in the
retina, thalamus, and visual cortex fire spontaneously in
highly structured, patterned ways. Experimental manipu-
lations have demonstrated that this activity is necessary for
proper function, but it is difficult to answer certain
fundamental questions about the role of this activity by
using experimental manipulations alone. We know that
the early visual system can adapt to better encode
statistical regularities in the environment. Can the same
learning system that adapts to natural input be applied to
this patterned activity to learn the visual code before
birth? What qualities would we want in an instructional
pattern of activity in the developing visual system? We
answer these questions by presenting an abstract model
of spontaneous activity in the early visual system—with
direct relations to more physiological models. We demon-
strate that instructive statistical properties can exist in
spontaneously generated patterns based on very simple,
local interactions. Also, we demonstrate that these
patterns not only have the necessary pairwise correlations,
which previous models have relied upon, but also
additional sparse, edge-like structure. This higher-order
statistical structure is universal to natural visual scenes and
is necessary to understand neural responses as an efficient
coding of our natural world. Most importantly, this
additional structure would allow the visual system to use
the same adaptive efficient coding strategy in two cases
previously treated as separate—learning from natural
visual experience as well as through innately generated
patterns before visual experience.

Innate Learning through Spontaneous Activity
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concerned in this paper with the statistical nature of the produced

activity than its precise localization – including whether the activity

originates in one particular area or is part of a larger, dynamical

system. For example, in comparison to retinal waves, LGN/V1

spontaneous activity has a more direct influence on cortical receptive

field formation. In ferrets the LGN remains spontaneously active at

the beginning of V1 activation, while V1 activity and retinal wave

production do not significantly overlap in time [6]. LGN and V1

activity have been experimentally characterized [19,22], but are far

less understood than retinal activity, thus prompting our analogies to

retinal waves in this paper.

Our patterns are generated using a variant of traditional site

percolation models [51] - the analogy to retinal wave propagation

and its relation to physiological models is detailed in the discussion

section. Models common to the study of critical phenomena in

physics, such as percolation models or the Ising model, have been

used in artificial neural networks and understanding adult retinal

neurons and can be equally useful in understanding models of

development. Ising models, for example, have been adapted as

artificial neural networks since Hopfield’s network [52]. Recent

work has also shown that Ising models are apt analogies for the

maximal entropy and high-predictability neural firing in the retina

upon natural stimulation [53]. Although the pattern generation

technique we use is quite abstract, similar networks have been

shown to be relevant biologically and demonstrate desirable

statistical properties.

The main goal of this paper is to show how the same adaptive,

efficient algorithm can be applied for both natural inputs as well as

spontaneous activity. We show that certain wavefront-containing

patterns possess the relevant statistics and a percolation network

provides a useful abstraction for demonstrating this property.

These patterns, independent of how they were generated, can

simply be used as an existence proof for the possible training role

of spontaneous activity. First, we will show our generated patterns

qualitatively resemble known patterns of spontaneous activity. We

will then compare various methods of learning V1 receptive fields

–showing how both natural images and spontaneous activity

patterns can be used to produce V1-like gabor filters. We will also

demonstrate how significant variations of receptive field properties

can occur even at the threshold for scale invariance – showing

flexibility of learning even for this simplified model. Finally, one of

the main points of this paper, as expressed in the final figure, is

that the relevant statistics for sensory coding go beyond simple

correlations. There are higher-order statistics which are still

present after decorrelation. Sparse and independent efficient

coding algorithms rely on these statistics, which are found in

natural scenes and are also present in the particular amorphous,

wavefront-containing structure of spontaneous activity patterns.

We will present how this fact points to the conclusion that the

same adaptive coding strategy may then be present both before

and during visual experience.

Results

We believe the relevant statistical properties for an efficient

‘‘innate learning’’ strategy are present in a wide class of

amorphous, wavefront patterns in which current models of

spontaneous activity belong. We hope to demonstrate this

generality, and avoid the pitfalls of selecting a particular

physiological model, by using an abstract technique for pattern

generation. This technique, described in detail in the methods

section, can be summarized as a simple, three parameter model –

a threshold, site percolation network model. Despite its abstract

nature, this technique is analogous to known spontaneous activity

patterns in generation and final pattern statistics, as mentioned in

the discussion section. We began by exploring the parameter space

for a suitable training pattern by varying the proportion of nodes

which are able to spread activity, p, and the threshold of active

neighboring nodes needed to initiate activity, t. For a fixed t, there

is a clear phase transition, the critical percolation threshold, pc.

For p.pc activity would spread over the whole image, and in the

extreme case only a few small areas would remain inactive. At

p,pc, active clusters would be finite in size, and in the extreme

would be exceptionally small clusters – approaching random noise.

Although not strictly a property of physiological spontaneous

activity patterns, we were interested in scale-invariant patterns in

this model. For this reason, sampling was done at p = pc (along the

phase transition boundary) as shown in figure 3A. Approximate

scale invariance is a property shared with natural images [54]. In

this case, it also allows neurons with limited dendritic fields to

produce consistent, large-scale statistical effects. We also chose this

sampling as a mathematical convenience so results would not

require a defined scale of analysis. Note that known spontaneous

patterns - such as retinal waves - are clearly not on this self-similar

boundary, but may be considered close, with many species having

Figure 2. V1 simple cell receptive fields derived through an
efficient coding of natural scenes and spontaneous activity
patterns. (A) Receptive fields from sparse coding: basis functions derived
from natural images (algorithm as described in [40]). (B) Receptive fields
from ICA: filters derived from natural images (algorithm as described in
[48]). For panels (B,C,D) the same patch collection and efficient coding
algorithm was used as detailed in the methods section. (C) Receptive field
filters derived from images of simulated retinal waves as in figure 2 of [18]
- a few examples are in figure 1c of this paper. Patch size for this data
corresponds to approximately 0.3 mm. Refer to the text for the
implication of this result. (D) Receptive field filters derived from our
generated patterns with parameters (p = 0.7, r = 3, t = 8).
doi:10.1371/journal.pcbi.1000137.g002

Innate Learning through Spontaneous Activity
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limited wave sizes, and others - such as chick retina - covering

large areas of retina and often terminating at the edges [55].

The next step was to find if these patterns could be used to train

an efficient coding system for natural vision. Sparse coding and

ICA have been used to find approximately independent codes for

natural images with resulting filters resembling those found in

primary visual cortex, as shown in figure 2A-C. Figure 2C shows

the filters derived from natural images given the parameters of

image patch collection and coding as detailed in the methods

section. Following the main thesis of this paper, one might ask if an

efficient coding of activity from more physiologically precise

models is capable of producing similar V1-like filters. To show

this, we efficiently encoded thresholded, time-lapsed retinal wave

images as in figure 2 of Godfrey and Swindale [18]. These

moderately resemble images of experimentally determined retinal

wave extent as shown in figure 1C (from figure 1 of [56]). The

resulting V1-like filters from this data are shown in figure 2D.

Although an efficient coding of this model qualitatively produces

physiological filters, we would like to demonstrate that these images

are embedded in a larger class of amorphous, wavefront-containing

patterns capable of producing relevant filter properties. We believe

the question of whether or not the activity comes from a particular

model - or even from the retina vs. the LGN/V1 - is important, but

we would like to stress the necessary statistical properties

independent of the particular source. To demonstrate this we

generated a set of images from our abstract pattern generation

technique with the resulting filters shown in figure 2E for

comparison. Note how the general statistical structure of natural

scenes, our abstract patterns, and more physiological models of

spontaneous activity all produce filters resembling those found in V1.

To further demonstrate the ability of these amorphous,

wavefront patterns to generate physiological filters, we generate

sets of images along the phase-transition boundary. Filters derived

from a representative sample are shown in figure 3C. A qualitative

difference between the gabor filters is visible, and we analyzed at

least one aspect of these filters – the orientation bandwidth. We

chose orientation bandwidth because it is a well-defined,

physiologically measured parameter. We fit 7 parameter gabor

filters to the 16616 pixel derived filters. After this fit, we used the

parameters of the gabor fits to find the orientation bandwidth,

with histograms of these fits shown in figure 3E, along with the

primate physiological median [57]. We also coarsely explored the

area below the phase transition boundary for this parameter; the

transparent color contour in figure 3A indicates how the median

orientation bandwidth changes in this region. Note for p,pc a

manipulation of ‘p’ is more effective at changing the orientation

bandwidth than ‘t’ – one indication of how models such as this one

could lead to testable predictions through pharmacological

manipulations. However, we do not intend to stress a direct

comparisons to physiological filters; we know that even within

neurophysiological literature, orientation and spatial frequency

bandwidth decreases as newborn macaques age [58] complicating

direct comparison. We show that even with this simple generation

technique and imposed self-similarity constraint, a significant

variation of filters can be produced. This variation demonstrates

one way a method like this may adjust local parameters to affect

global pattern statistics and more closely resemble properties of

adult physiological filters and natural scene efficient coding filters.

Current models proposed to explain pre-experience cortical

receptive field development rely primarily on hebbian mechanisms

and pairwise correlations. These approaches do not address the

relevant statistical structure for receptive field formation related to

efficient coding. Although hebbian models are capable of

achieving arbitrary levels of complexity - and can even implement

sparse coding strategies in specific configurations [59] - we note

that the fundamental computational insight of hebbian models

Figure 3. Summary of pattern sampling and analysis demonstrating relevant variation in derived gabor filters. (A) Phase plane with ‘r’
fixed at 3. The curved line in the plot indicates the phase transition boundary as detailed in the methods section. The transparent color contours
below the phase transition line indicate the trend for the median orientation bandwidth in that area of the plane. (B) Sampled patterns from (p,r,t)
space near the critical percolation threshold - (0.15,3,1), (0.48,3,5) and (0.83,3,10). (C) The 16616 pixel derived ICA filters. (D) Seven parameter gabor
fits of those filters. (E) Histograms of the gabor orientation bandwidths in blue compared to the physiological median in red.
doi:10.1371/journal.pcbi.1000137.g003

Innate Learning through Spontaneous Activity
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relies on pairwise correlations. In figure 4, we address the

fundamental differences between these second order and higher

order correlations with respect to relevant statistical structure and

receptive fields. Note that uncorrelated noise (‘‘white’’ noise) has

no second order or higher order statistics, so techniques that rely

on pairwise correlations, as in PCA, or higher-order statistics, as in

ICA, do not produce filters with discernable structure. In patterns

with only second order correlations, as in the random 1/f patterns

(‘‘pink’’ noise), PCA can produce relevant filters. However, in

these 1/f noise patterns the sparse structure on which ICA relies is

not present, and structured filters do not form. For the natural and

our patterned images in this figure, we have partially removed the

second order correlations by a procedure to flatten a 1/f slope in

the Fourier amplitude spectrum. This removes the correlations in

images that have an approximately 1/f slope, as was shown to be

the case for natural images [54]. When we whiten the images by

removing the pairwise correlations, PCA bases resembling

receptive fields are, by definition, unable to form, and we see

that natural images as well as the wavefront patterns still retain

important image structure. This whitened structure, reminiscent of

line drawings, is efficiently encoded using ICA. Also note that for

these image sets the ICA filters are inherently localized within the

filter patches. However, encoding using PCA will not produce

localized filters without the use of additional constraints.

Whichever encoding scheme is used, it should be noted that the

generated wavefront patterns have both pairwise correlation

structure as well as sparse, edge-like structure used by ICA. If

only correlations were necessary to prepare the visual system, there

are a number of even simpler ways to create these correlations

without the additional wavefront, edge-like structure. This

additional, higher-order structure can be exploited by the visual

system to guide receptive field formation and maintenance. The

fact that it exists in both spontaneous activity patterns and natural

scenes suggests that both endogenous and external activity may

use the same method of receptive field adaptation.

Discussion

The point of this paper is to show how seemingly random patterns

of activity can be used as training patterns for the visual system

before eye opening. We believe that real spontaneous activity

patterns are part of a class of amorphous, wavefront-containing

patterns with the relevant efficient coding statistics. The patterns we

create are also part of this class but abstract out the minimal, essential

features while still retaining some biological plausibility. This pattern

generation technique is of interest for the following reasons: 1)

conceptual and analytical simplicity, 2) statistical properties – both

self-similar/correlation-based and sparse coding/edge-like structure,

and 3) biological plausibility. First, the technique is a simply stated

three parameter model, collapsing to a one parameter model if you

fix the neighborhood radius (r = 3, here) and require fractal self-

similarity (p = pc). Also, this technique is not only conceptually

simple, but simple to implement given a biological substrate of

dendritic fields, local activity pooling, and activation thresholds.

Second, the statistical properties have been discussed in detail – this

pattern generation technique is capable of extremes from complete

noise to clusters of activity to full activation; self-similar fractal

patterns with similar statistics at all spatial scales; and edge statistics

which vary the fractal dimension of the edges and consequently the

sparse-coding structure of the resultant filters. Third, this technique

can be considered an abstraction of more biologically plausible

models. The retinal wave model of Butts and Feller [17] showed that

wave propagation speed and termination were primarily determined

by a 2-D map of one summary variable, f – the local fraction of

recruitable amacrine cells – similar to our variable ‘p’. Their random

variation of this parameter came from variations in cell refractory

period, temporal dynamics from multiple waves, and influence of

non-propagating spontaneous activity. Although the more recent

Godfrey and Swindale model [18] does not offer an equivalent

summary variable, we believe a similar abstraction of local network

excitability is equally possible. In the Butts model a neuron would

only fire if a threshold of neighboring cells fired, similar to our ‘t’,

while in the Godfrey model this threshold varied over time. Both

models also had a fixed dendritic field size, analogous to our ‘r’.

Their parameters were chosen to match known physiological

parameters such as wave size, speed, and frequency given

neurophysiological constraints. Our parameters choice, however,

Figure 4. Information relevant to filter formation goes beyond
simple, pairwise correlations. (A) Examples of training data for
efficient coding. Whitened images were obtained by flattening an
assumed 1/f slope in the Fourier amplitude spectrum. (B) PCA bases
from each of the six data sets in (A). Note, algorithms which rely on
pairwise correlations alone (also known as second order image
statistics) only find structure for receptive field formation in correlated
data [red rectangle] although much of the useful structure still visible in
the decorrelated (‘‘whitened’’) images is not captured. Also note the
receptive fields in this case are not localized. (C) Representative filters
from the same image sets using ICA. Note that the filters from the
whitened and unwhitened, natural and wavefront-patterned data
qualitatively resemble receptive fields [red square], whereas unstruc-
tured 1/f noise does not produce equivalent filters - unlike the results of
pairwise correlation-based measures. (note: differences in whitened ICA
filter sizes are primarily a product of the 1/f assumption).
doi:10.1371/journal.pcbi.1000137.g004

Innate Learning through Spontaneous Activity
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was more constrained by theoretical and computational concerns. It

may be useful to compare these models; for example, pharmaco-

logical manipulations of amacrine cell recruitability or neural firing

threshold could move pattern generation along our p-t phase plane

vertically or horizontally respectively, leading to potentially testable

predictions. We however consider this particular pattern generation

technique better suited as a conceptual model to address a

developmental paradigm and limitation of current statistical

techniques, rather than a guide for directly verifiable experiments.

As stated in the introduction, we believe that the use of highly

theoretical models such as percolation networks and Ising models

have been of sufficient use in understanding neural phenomena

[52,53] to warrant application in this domain.

This method provides an alternative approach to understanding

the relation between spontaneous activity and V1 development by

stressing the relation to image statistics and efficient coding in

individual receptive fields. There are a number of models that

stress other physiological dimensions, such as cortical column map

formation, which can provide more insights to development.

Linsker [42] demonstrated orientation column (OR) formation in

a multi-layer model beginning with uncorrelated noise. Grabska-

Barwinska and von der Malsburg demonstrate orientation column

formation using recent experimental evidence of patchy, spatially

periodic cortical spontaneous activity [60]. Miller [45] developed

ocular dominance (OD) as well as orientation column (OR)

formation. More current models have become even more

ambitious in the development of map features. Bednar and

Miikkulainen demonstrated direction selectivity (DR) to create a

combined map (OR/DR) [61]. A later model combined these

features (OC/OR/DR) using translated natural images [44].

Carreira-Perpinan et. al. [46] using the elastic net model [62]

included a spatial-frequency map (OC/OR/DR/SF), although

the relation of their input to either natural stimulation or

spontaneous activity is not clear. In each of these models the goal

was to synthesize a cortical map and receptive fields which mimic

known neurophysiology. Our use of functional, efficient coding

methods precludes any relation to a particular topography, but

with this we generate individual receptive fields with properties

more relevant to physiological filters – more spatially bandpassed

and localized. Our technique also directly addresses how the

resulting code reflects its function during natural vision - by

similarly efficiently encoding natural inputs using the same

adaptive algorithm. Although our model clearly lacks a columnar

organization, it does uniquely address the relation of spontaneous

activity to current statistical methods of efficient coding.

Although this paper stresses the effects and theoretical justifica-

tions of spontaneous activity, there are clearly limitations to this

method for preparing V1. Crowley and Katz [24] stated that ocular

dominance columns initially form through molecular guidance

mechanisms, and subsequent activity was needed for maintenance

and plasticity during the critical period. Also, Ringach’s connectivity

model [63,64] shows how V1 receptive fields and functional

topography could form based on the quasi-regularity of the ON/

OFF center retinal ganglion cells in the retinal mosaic; with closely

located ON and OFF-center cells forming simple receptive fields.

Certainly a number of molecular-guidance mechanisms are

necessary for proper development, and even if rudimentary receptive

fields can form through simple axon guidance mechanisms, we still

believe the simplicity and functional benefits of endogenous activity

suggest a plausible role in development. The visual system will

eventually refine based on the statistical structure in the experienced

natural signals, and the pre-experience receptive fields can refine

using the same mechanism on simple patterns. This conceptual

model is able to address general properties of this process; however, it

is more difficult to address the precise nature of the receptive fields

between molecular guidance cues and the onset of natural

experience. In addition to physiological details, such as optical and

retinal maturity, the goals of this handoff between development

processes need to be specified for a given animal. Some precocial

animals may require a well functioning visual system from the onset,

implying a goal of immediate efficient coding at the expense of later

adaptability. On the other hand, altricial animals, such as monkeys

and humans, may trade off immediate optimality for a certain

amount of environmental adaptability; this may be one functional

justification for the large spatial frequency and orientation

bandwidths in neonatal monkeys. Although a more detailed,

species-specific analysis may require additional assumptions, the

general strategy may be universally beneficial. The functional

benefits are an increased refinement beyond rough molecular cues

using techniques which are relatively simple given the existence of a

separate, adaptive learning system.

In summary, our pattern generation technique resembles known

patterns of spontaneous activity in both appearance and how they

are generated. We have demonstrated that simply-generated,

sparse, wavefront-containing patterns have the statistics to produce

a sparse, efficient code with filters resembling those found in

primary visual cortex and those produced by an efficient coding of

natural scenes. Also, this work demonstrates the critical impor-

tance of statistics beyond simple pairwise correlations (figure 4)

which exist in wavefront-containing patterns. Efficient coding

models relating natural scene statistics to V1 activity have relied on

higher-order statistics for over a decade. Previous spontaneous

activity models that try to explain V1 formation rely only on

lower-order statistics that may not be as relevant to early visual

processing from a functional perspective. The combination of a

simplified abstraction of physiological methods of spontaneous

activity and the demonstration that it provides a richer theoretical

and computational understanding of why these patterns emerge is

clearly attractive as it gives us a better, deeper understanding of

the nature of spontaneous activity in development.

With spontaneous activity present in sensory systems, the

hippocampus, and motor systems [65], any additional methods of

understanding this activity may lead to insights of value in many

other areas of brain development. We believe it is useful to add a

computational perspective to the mechanistic interpretation of this

activity - in addition to the role of spontaneous activity in axon

branching, dendritic patterning, and synaptic pruning. Clearly these

implementation-level goals are necessary for function, but do not

address the general, functional purpose for this connectivity. A

statistical, computational perspective is more likely to address the

universal and ubiquitous nature of these patterns during develop-

ment. In this paper, we have given a parsimonious explanation of

both why this activity has particular sparse, edge-like statistics

beyond simple correlations and how this allows the same adaptive

learning system to use both endogenous spontaneous activity and

natural inputs to refine the visual code. But more generally, we

believe that by examining spontaneous activity in this way, we bring

about a conceptual shift in the way people interpret developmental

strategies. In the context of the visual system, it appears that the

system both learns from patterns extrinsic to its functionality, but

strictly internal to the animal; a bridging point between both learned

and innate interpretations of mental phenomena.

Methods

The methods in this paper address the synthesis and analysis of

generated activity patterns. The pattern generation technique in

this paper was chosen for its theoretical simplicity and its
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abstraction of essential spontaneous activity features. Its relation to

more physiologically detailed models of spontaneous activity

[17,18] is in the discussion section. Details of how the patterns

are generated and analyzed are given below.

Pattern generation
The pattern generation is a variation of site percolation [51].

We use a simple, three parameter (p, r, t) model involving

initiation and complete propagation of wave activity – thus the

patterns have no temporal component. On a square array of

points, mark a random fraction ‘p’ of the points on the grid as

potentially active. To initiate an active cluster, we randomly select

a location and activate all available points in a neighborhood

radius ‘r’. Neighboring potentially active points near the wave can

only become active if there are at least ‘t’ active points within a

distance ‘r’. The wave is allowed to propagate until no more cells

can become active. This completely explains the method of

pattern generation, but not the interesting aspects of the behavior.

Introductory percolation theory involves networks with t = 1,

often with r = 1 as a typical example. When ‘p’ approaches a value

known as the percolation threshold, ‘pc’, the pattern of activity is

known to be fractal – the image statistics appear similar at all

scales. For example, when p,pc, the activation terminates forming

small clusters, when p.pc the activation spreads without bound

leaving small holes without activity, but when p = pc, both the

activity and holes are nearly infinite in extent – leading to a fractal

interpretation. Images at increasingly larger scales become

indistinguishable. For examples, the following (p, r, t) triplets are

known empirically, and in some cases analytically, to produce

fractal images – (,0.592, 1, 1), (,0.407, 1.8, 1), (,0.288, 2, 1)

[66]. For our measurements, for a given ‘r’ and ‘t’ pair, we found

pc by finding the maximum derivative in the function of cluster

size to ‘p’ value. To obtain enough edge statistics on these waves,

we randomly chose points to begin wave propagation until more

than 20% of the available points were activated – stopping when

the last wave was allowed to fully propagate. Only the spatial

statistics of these final patterns were explored. All encoding was

done by downsampling the image by 2 to minimize any local edge

effects due to aliasing. Unless otherwise noted, we set r = 3 for

simplicity.

ICA coding
The method used to analyze these patterns is demonstrated in

figure 3. 1) Generate a series of patterns from a given set of

parameters, 2) extract image patches from that set, 3) preprocess

(‘‘whiten’’) the data, and find the optimal code for the data using

independent component analysis (details below), 4) fit 2D gabor

functions to the resulting filters, and 5) analyze properties of the

resulting gabors. We show how they vary with a change in the

underlying pattern generation parameters and compare to

experimentally measured filters. In this case, we chose orientation

bandwidth to demonstrate how filters that qualitatively appear

similar can vary in a dimension useful to efficient encoding in the

adult.

For both natural images and activity patterns we randomly

sampled image patches – excluding patches within a patch width

of the border. We also excluded patches without a significant

variation for learning – specifically, patches with a pixel variance

less than 0.16. This is equivalent to a requirement that between

20%–80% of the original downsampled sites were occupied. For

each 2566256 image, downsampled to 1286128, up to 100 viable

16616 pixel patches were selected. This was done until 10 000

patches were collected, which were then encoded using the

fastICA algorithm [48] using the ‘tanh’ contrast function. PCA

dimensionality was reduced to 100.
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