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Abstract
A wide variety of papers have reviewed what is known about the function of

primary visual cortex. In this article, rather than stating what is known, we attempt
to estimate how much is still unknown about V1 function. In particular, we identify
five problems with the current view of V1 that stem largely from experimental and
theoretical biases, in addition to the contributions of non-linearities in the cortex that
are not well understood. Our purpose is to open the door to new theories, a number
of which we describe along with some proposals for testing them.

1 Introduction

The primary visual cortex (area V1) of mammals has been the subject of intense
study for at least four decades. Hubel and Wiesel’s original studies in the early
1960’s created a paradigm shift by demonstrating that the responses of single neurons
in the cortex could be tied to distinct image properties such as the local orientation
of contrast (Hubel & Wiesel 1959; 1968). Since that time, the study of V1 has
become something of a miniature industry, to the point where the annual Society for
Neuroscience meeting now routinely devotes multiple sessions entirely to V1 anatomy
and physiology. Without doubt, much has been learned from these efforts. However,
as we shall argue here, there remains a great deal that is still unknown about how
V1 works and its role in visual system function. We believe it is quite probable that
the correct theory of V1 is still far afield from the currently proposed theories.

It may seem surprising to some that we should take such a stance. V1 does
after all have a seemingly ordered appearance—a clear topographic map, and an or-
derly arrangement of ocular dominance and orientation columns. Many neurons are

∗An earlier version of this article appeared previously as, “What is the Other 85% of V1 Doing?”
In: 23 Problems in Systems Neuroscience. T.J. Sejnowski, L. van Hemmen, eds. Oxford University
Press. 2005.
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Figure 1: Standard model of V1 simple cell responses. The neuron computes a weighted
sum of the image over space and time, and this result is normalized by the responses of
neighboring units, and passed through a pointwise non-linearity (see e.g., Carandini et al.,
1997).

demonstrably tuned for stimulus features such as orientation, spatial-frequency, color,
direction of motion, and disparity. And there has even emerged a fairly well agreed
upon “standard model” for V1 in which simple-cells compute a linearly weighted
sum of the input over space and time (usually a Gabor-like function) which is then
normalized by the responses of neighboring neurons and passed through a pointwise
nonlinearity (Figure 1). Complex cells are similarly explained in terms of summing
the outputs of a local pool of simple-cells with similar tuning properties but differ-
ent positions or phases. A variety of models have been proposed for the response
normalization (Heeger 1991; Geisler & Albrecht 1997; Schwartz & Simoncelli 2001;
Cavanaugh et al., 2002a), but the net result is often to think of V1 as a kind of “Ga-
bor filter bank.” There are numerous papers showing that this basic model fits much
of the existing data well, and many scientists have come to accept this as a working
model of V1 function (see e.g., Lennie, 2003a). Indeed, such models are widely used to
predict psychophysical performance (Graham & Nachmias 1971; Watson et al. 1983;
Anderson et al. 1991), and they have been shown to provide efficient representations
of natural scenes (Olshausen & Field, 1996; Bell & Sejnowski, 1997).

But behind this picture of apparent orderliness, there lies an abundance of un-
explained phenomena, a growing list of untidy findings, and an increasingly uncom-
fortable feeling among many about how the experiments that have led to our current
view of V1 were conducted in the first place. The main problem stems from the
fact that cortical neurons are highly nonlinear—i.e., they emit all-or-nothing action
potentials, not analog values. They also adapt, so their response properties depend
upon the history of activity. Most importantly, cortical pyramidal cells have highly
elaborate dendritic trees, and realistic biophysical models that include voltage-gated
channels suggest that each thin branch could act as a non-linear subunit, so that
any one neuron could be computing many different non-linear combinations of its
inputs (Hausser & Mel, 2003; Polsky et al., 2004), in addition to being sensitive to
coincidences (Softky & Koch, 1993; Azouz & Gray, 2000, 2003).

Everyone knows that neurons are non-linear, but few have acknowledged the impli-
cations for studying cortical function. Unlike linear systems, where there exist math-
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ematically tractable, textbook methods for system identification, non-linear systems
can not be teased apart using some straightforward, structuralist approach. That is,
there is no unique “basis set” with which one can probe the system to characterize its
behavior in general.1 Nevertheless, the structuralist approach has formed the bedrock
of V1 physiology for the past four decades. Researchers have probed neurons with
spots, edges, gratings and a variety of mathematically elegant functions in the hope
that the true behavior of neurons can be explained in terms of some simple function
of these components. However, the evidence that this approach has been successful is
lacking. We simply have no reason to believe that a population of interacting neurons
can be reduced in this way.

For any complex system, it seems reasonable to begin where the system acts ra-
tionally: to study the behavior under conditions where ones models are relatively
effective. But for a neural system, that leaves the question as to whether such be-
havior represents the relevant aspect of the neurons activity—i.e., does this help us
understand how neurons operate under natural conditions? Much of our understand-
ing of V1 is derived from recording from one neuron at a time using simple stimuli
(edges, gratings, spots). From this body of experiments has emerged the standard
model that forms the basis for our conceptual understanding of V1. In recent years,
a number of innovative studies have moved away from this basic approach, recording
from multiple neurons with complex, ecologically relevant stimuli. Are these studies
simply adding minor correction factors to our understanding, or will they require us
to completely revamp the current theories? Are the current models close to account-
ing for the majority of responses in the majority of neurons in V1? How close are we
to understanding V1?

In this article we present our reasons for believing that we may have far to go
in understanding V1. We identify five fundamental problems with the current view
of V1 function that stem largely from experimental and theoretical biases, in addi-
tion to the contributions of non-linearities in the cortex that are not well understood.
Furthermore, we attempt to quantify the level of our current understanding by consid-
ering two important factors: an estimate of the fraction of V1 neuron types that are
typically characterized in experimental studies, and the fraction of variance explained
in the responses of these neurons under natural viewing conditions. Together, these
two factors lead us to conclude that at present we can rightfully claim to understand
only 10-20% of how V1 actually operates under normal conditions.

Our aim in pointing these things out is not simply to tear down the current
framework. We ourselves have attempted to account for some aspects of the standard
model in terms of efficient coding principles (sparse coding), so obviously we believe
that we have made a good start. Rather, our goal is to show how much room there is

1The Volterra series expansion is often touted as a general approach for character-
izing non-linear systems, but it has been of little practical value in analyzing neural
systems because it requires estimating many higher-order moments. In addition, it
is an overly-general, “black-box” approach that does not easily allow one to incorpo-
rate prior knowledge about the types of non-linearities known to exist in the nervous
system.
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for new theories, and where the weaknesses in the current theories might lie. In the
second half of the article we describe a few of our favorite alternatives to the standard
theories. A central conclusion that emerges from this exercise is that we need to begin
seriously studying how V1 behaves using natural scenes, using multi-unit recording
techniques, in addition to explicitly describing any potential biases in the gathering
of data. We believe this approach can help to reveal not just how much we know
about neural coding in the visual pathway, but also how much we do not know.

2 Five problems with the current view

2.1 Biased sampling of neurons

The vast majority of our knowledge about V1 function has been obtained from single
unit recordings in which a single micro-electrode is brought into close proximity with a
neuron in cortex. Ideally, when doing this one would like to obtain an unbiased sample
from any given layer of cortex. But some biases are difficult to avoid. For instance,
neurons with large cell bodies will give rise to extracellular action potentials that
have larger amplitudes and propagate over larger distances than neurons with small
cell bodies. Without careful spike sorting, the smaller extracellular action potentials
may easily become lost in the background when in the vicinity of neurons with large
extracellular action potentials. This creates a bias in sampling that is not easy to
dismiss.

Even when a neuron has been successfully isolated, detailed investigation of the
neuron may be bypassed if it does not respond “rationally” to standard test stimuli
or fit the stereotype of what the investigator believes the neuron should do. This is
especially true for higher visual areas such as V4, but it is also true for V1. Such
neurons are commonly regarded as “visually unresponsive.” It is difficult to know
how frequently such neurons are encountered because oftentimes they simply go un-
reported, or else it is simply stated that only visually responsive units were used for
analysis.

While it is admittedly difficult to characterize the information processing capabil-
ities of a neuron that seems unresponsive, it is still important to know in what way
these neurons are unresponsive. What are the statistics of activity? Do they tend
to appear bursty or tonic? Do they tend to be encountered in particular layers of
cortex? And most importantly, are they merely unresponsive to bars and gratings, or
are they also equally uninterpretable in their responses to a wider variety of stimuli,
such as natural images? A seasoned experimentalist who has recorded from hundreds
of neurons would probably have some feel for these things. But for the many readers
not directly involved in collecting the data, there is no way of knowing these unre-
ported aspects of V1 physiology. It is possible that someone may eventually come up
with a theory that could account for some of these unresponsive neurons, but this
can’t happen if no one knows they are there.

A related bias that arises in sampling neurons is that the process of hunting for
neurons with a single micro-electrode will typically steer one towards neurons with
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higher firing rates. One line of evidence suggesting that this is a significant bias comes
from work estimating mean firing rates in the cortex based on energy consumption.
Attwell & Laughlin (2001) and Lennie (2003b) calculate that the average activity
must be relatively low—i.e., less than 1 Hz in primate cortex. However, in the single-
unit literature one finds many studies in which even the spontaneous or background
rates are well above 1 Hz. This suggests that the more active neurons are substantially
overrepresented (Lennie 2003b). What makes matters worse is that if we assume V1
neurons exhibit an exponential firing rate distribution, as has been demonstrated for
natural scenes and other stimuli (Baddeley et al., 1997), then a mean firing rate of 1 Hz
would yield the distribution shown in Figure 2a. With such a distribution, only a small
fraction of neurons would exhibit the sorts of firing rates normally associated with a
robust response. For example, the total probability for firing rates of even 5 Hz and
above is 0.007, meaning that one would have to wait 1-2 minutes on average in order
to observe a one-second interval containing five or more spikes. It seems possible that
such neurons could either be missed altogether, or else purposely bypassed because
they do not yield enough spikes for data analysis. For example, the overall mean
firing rate of V1 neurons in the Baddeley et al. study was 4.0 Hz (std. 3.6 Hz),
suggesting that these neurons constitute a sub-population that were perhaps easier
to find, but not necessarily representative of the population as a whole. Interestingly,
the authors point out that even this rate is considered low (which they attribute to
anaesthesia), as previous studies (Legendy & Salcman, 1985) report the mean firing
rate to be 8.9 Hz (s.d. 7.0 Hz).

Given the variety of neurons in V1, it seems reasonable to presume there exists a
heterogeneous population of neurons with different mean firing rates. If we assume
some distribution over these rates, then it is possible to obtain an estimate of the
fraction of the population characterized given a particular criterion response. And
from that we can calculate what the observed mean rate would be for that fraction.
The result of such an analysis, assuming a log-normal distribution of mean-rates with
an overall mean of 1 Hz, is shown in Figure 2b. As one can see, an overall mean of 4
Hz implies that the selection criterion was somewhere between 1-2 Hz, which would
capture less than 20% of the population.

Neurophysiological studies of the hippocampus provide an interesting lesson about
the sorts of biases introduced by low firing rates. Prior to the use of chronic implants,
in which the activity of neurons could be monitored for extended periods while a rat
explored its environment, the granule cells of the dentate gyrus were thought to be
mostly high rate “theta” cells (e.g., Rose et al., 1983). But it eventually became
clear that the majority are actually very low rate cells (Jung & McNaughton, 1993),
and that for technical reasons only high-rate interneurons were being detected in the
earlier studies (W.E. Skaggs, personal communication, Jan. 2004). In fact, Thompson
& Best (1989) found that nearly two-thirds of all hippocampal neurons which showed
activity under anaesthesia became silent in the awake, behaving rat. This overall
pattern appears to be upheld in macaque hippocampus, where the use of chronic
implants now routinely yields neurons with overall firing rates below 0.1 Hz (Barnes
et al., 2003), which differs by nearly two orders of magnitude from the “low baseline
rates” of 8.1 Hz reported by Wirth et al. (2003) using acutely implanted electrodes.
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Figure 2: Sampling bias. A. Exponential firing rate distribution with a mean of 1 Hz
(dashed line denotes mean). B. Resulting overall mean-rate of the population (top), and
fraction of the population captured (bottom), as a result of recording from neurons only
above a given mean firing-rate (threshold).

The dramatic turn of events afforded by the application of chronic implants com-
bined with natural stimuli and behavior in the hippocampus can only make one
wonder what mysteries could be unraveled when similar techniques are applied to
visual cortex. What is the natural state of activity during free-viewing of natural
scenes, where the animal is actively exploring its environment? What are the actual
average firing rates and other statistics of activity among layer 2/3 pyramidal cells?
What are the huge numbers of granule cells in macaque layer 4, which outnumber
the geniculate fiber inputs by 30:1, doing? Do they provide a sparser code than their
geniculate counterparts? And what about the distribution of actual receptive field
sizes? Current estimates show that most parafoveal neurons in V1 have receptive
field sizes on the order of 0.1 deg. But based on retinal anatomy and psychophysical
performance one would expect to find a substantial number of neurons with receptive
fields an order of magnitude smaller, ca. 0.01 deg. (Olshausen & Anderson, 1995).
Such receptive field sizes are extremely rare, if not non-existent, in the existing data
on macaque V1 neurons collected using acute recording techniques (De Valois et al.,
1982; Parker & Hawken, 1988).

Overall, then, one can identify at least three different biases in the sampling of
neurons:

1. preference for neurons with large cell bodies and large extra- cellular action
potentials,

2. preference for “visually responsive” neurons, and

3. preference for neurons with high firing rates.

So where does this leave us? Let us be conservative. If we assume that 5-10% of
neurons are missed because they have weak extracellular action potentials, another
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5-10% are discarded because they are not visually unresponsive, and 50-60% are
missed because of low firing rates (assuming a conservative threshold of 0.5 Hz in
Figure 2), then even allowing for some overlap among these populations would yield
the generous estimate that 40% of the population has actually been characterized.

2.2 Biased stimuli

Much of our current knowledge of V1 neural response properties is derived from ex-
periments using reduced stimuli. Oftentimes these stimuli are ideal for characterizing
linear systems—i.e., spots, white noise, or sinewave gratings—or else they are de-
signed around pre-existing notions of how neurons should respond. The hope is that
the insights gained from studying neurons using these reduced stimuli will generalize
to more complex situation—e.g., natural scenes. But of course there is no guarantee
that this is the case. And given the non-linearities inherent in neural responses, we
have every reason to be skeptical.

Sinewave gratings are ubiquitous tools in visual system neurophysiology and psy-
chophysics. In fact, the demand for using these stimuli is so high that some companies
produce lab equipment with specialized routines designed for this purpose (e.g., Cam-
bridge Research Systems). But sinewaves are special only because they are eigenfunc-
tions of linear, time- or space-invariant systems. For non-linear systems, they bear no
particular meaning, nor do they occupy any special status. In the auditory domain,
sinewaves could be justified from the standpoint that many natural sounds are pro-
duced by oscillating membranes. However, in the visual world there are few things
that naturally oscillate either spatially or temporally. The Fourier basis set is just
one of many possible basis sets, and if the system is non-linear, no one basis set will
necessarily provide a proper account of the system.

Bars of light, Gabor functions, Walsh patterns or any other basis set will suffer
from similar problems requiring assumptions of the types of non-linearities that are
present. The Gabor function has been argued to provide a good model of cortical
receptive fields (Field & Tolhurst, 1986; Jones & Palmer, 1987). However, the meth-
ods used to measure the receptive field in the first place generally search for the
best fitting linear model. They are not tests of how well the receptive field model
actually describes the response of the neuron. Not until recent work by Gallant and
colleagues (David, Vinje & Gallant, 2004) have these models been tested in ecological
conditions. And as we discuss below, the results demonstrate that these models often
fail to adequately capture the actual behavior of neurons.

The use of white noise and m-sequences can provide some advantage over the
traditional linear systems approach, as they can provide a wider range of stimuli than
a simple basis set and are thus capable of mapping out the non-linearity of a system
if the non-linearities take on particular forms (e.g., Nykamp and Ringach, 2002).
In addition, by analyzing the eigenvectors of the spike-triggered covariance matrix
one can recover fairly complex non-linear models, such as the hypothetical subunits
composing a complex cell, or suppressive dimensions in the stimulus space (Touryan
et al. 2002; Rust et al. 2004).

However, there is only one way to map a non-linear system with complete confidence—
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one must present the neuron with all possible stimuli. The scope of this task is truly
breathtaking. Even an 8 × 8 pixel patch with 6 bits of grey level requires search-
ing 2384 > 10100 possible combinations (a google of combinations). If we allow for
temporal sensitivity and include a sequence of 10 such patches, we are exceeding
101000. With the estimated number of particles in the universe estimated to be in
the range of 1080, it should be clear that this is far beyond what any experimental
method could explore. In theory, a non-linear neuron could behave quite rationally
for all but a handful of these stimuli, so unless this handful has been measured, there
is no way to be certain the neuron has been adequately characterized. The use of
independent white noise can theoretically present a neuron with all possible stimuli.
However, 10 hours of recording from a single neuron with a patch like that above at
30 frames per second will present just 106 out of the 101000 possible stimuli. Using
such a tiny fraction of the possible stimuli allows mapping of the non-linearities only
if the non-linearities are quite smooth.

The deeper question is whether one can predict the responses of neurons from
some combinatorial rule of the responses derived from a reduced set of stimuli. The
response of the system to any reduced set of stimuli can not be guaranteed to provide
the information needed to predict the response to an arbitrary combination of those
stimuli. Of course, we will never know this until it is tested, and that is precisely the
problem—the central assumption of the elementwise, reductionist approach has yet to
be thoroughly tested.

We believe that the solution to these problems is to turn to natural scenes. Our
intuitions for how to reduce stimuli should be guided by the sorts of structure that
occur in natural scenes, not arbitrary (or even elegant) mathematical functions or
stimuli that are conceptually simple or which happen to be easy to generate on a
monitor. Since it is impossible to map out the response to all possible stimuli, some
assumptions about the nature of the non-linearity and the stimulus space must be
made. The assumption we believe is appropriate is that the non-linearities relevant
to visual processing are most likely to be revealed when the system is presented with
ecologically relevant stimuli.

Traditionally experimentalists have been reluctant to use natural scenes as stimuli
because they seem highly variable and “uncontrolled.” But in recent years there has
been significant progress in modeling the structure of natural images (Simoncelli &
Olshausen, 2001), and it should soon be possible to develop parametric descriptions
of natural images that could be used to generate experimental stimuli (e.g., Heeger
& Bergen, 1995). In addition, there have been some recent attempts to map out
the non-linearities in response to natural images (Sharpee et al, 2004). And the
development of several adaptive stimulus techniques looks to be a promising avenue
for determining the relevant stimulus for sensory neurons (Foldiak et al. 2004; Edin
et al. 2004; O’Connor et al. 2004).

In summary, then, there are two reasons for using natural scenes as stimuli: 1)
By devoting ones resources to relevant ecological stimuli, the experimentalist has a
greater chance of finding and mapping the non-linearities relevant to the function of
neurons, and 2) the responses to natural scenes provide an ecologically meaningful
test of any neural model. Even if non-ecological stimuli are used to map a neurons
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behavior, the true test that the characterization is correct is to demonstrate that one
can predict the neurons behavior in ecological conditions.

2.3 Biased theories

Currently in neuroscience there is an emphasis on “telling a story.” This often en-
courages investigators to demonstrate when a theory explains data, not when a theory
provides a poor model. In addition, editorial pressures can encourage one to make a
tidy picture out of data that may actually be quite messy. This of course runs the
risk of forcing a picture that does not actually exist. Theories then emerge that are
centered around explaining a particular subset of published data, or which can be
conveniently proven, rather than being motivated by functional considerations—i.e.,
how does this help the brain to solve the real problems of vision?

For instance, early work demonstrating the spatial frequency selectivity of neurons
(e.g., Blakemore and Campbell, 1969) led a number of investigators toward a “Fourier
view” of the cortex. Such work led to thousands of studies devoted to questions
regarding frequency tuning and the relevance of this tuning to the human detection
and discrimination of sinusoidal gratings. This left us with complex theories for how
we detect gratings, but with little understanding of how such a system would function
in the natural world.

Another example is the classification of V1 neurons into the categories of ‘simple’,
‘complex’, and ‘hypercomplex’ or ‘end-stopped’. Simple cells are noted for having
oriented receptive fields organized into explicit excitatory and inhibitory subfields,
whereas complex cells are tuned for orientation but are relatively insensitive to posi-
tion and the sign of contrast (black-white edge vs. white-black edge). Hypercomplex
cells display more complex shape selectivity and some appear most responsive to
short bars or the terminations of bars of light (so-called “end-stopping”). Are these
categories real, or a result of the particular way neurons were stimulated and the data
analyzed?

A widely accepted theory that accounts for the distinction between simple and
complex cells is that simple cells compute a (mostly linear) weighted sum of image
pixels, whereas complex cells compute a sum of the squared and half-rectified outputs
of simple cells of the same orientation—i.e., the so-called “energy model” (Adelson
& Bergen, 1985). This theory is consistent with measurements of response modula-
tion in response to drifting sinewave gratings, otherwise known as the “F1/F0 ratio”
(Skottun et al., 1991). From this measure one finds clear evidence for a bimodal distri-
bution of neurons, with simple-cells having ratios greater than one, and complex-cells
having ratios less than one. Recently, however, it has been argued that this particu-
lar nonlinear measure tends to exaggerate or even introduce bimodality rather than
reflecting an actual, intrinsic property of the data (Mechler & Ringach, 2002). When
receptive fields are instead characterized by the degree of overlap between zones ac-
tivated by increments or decrements in contrast, one obtains a continuous, unimodal
distribution when the overlap is expressed as the normalized distance between the
zones, but a bimodal distribution when expressed as an overlap index (sum of widths
minus the separation divided by sum of widths plus the separation) (Mata et al.,
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2005; Kagan et al., 2002). In addition, the energy model of complex cells does a poor
job accounting for complex cells with a partial overlap of activating zones. Thus, the
way in which response properties are characterized can have a profound effect on the
resulting theoretical framework that is adopted to explain the results. The notion of
two classes of neurons, “simple” and “complex,” has been firmly planted in the minds
of modelers and experimentalists alike, but a closer examination of the data reveals
that this classification scheme could actually be an artifact of the lens through which
we view the data.

The notion of “end-stopped” neurons introduces even more questions when one
considers the structure of natural images. Most natural scenes are not littered with
line terminations or short bars—see for example Figure 3a. Indeed, at the scale of
a V1 receptive field, the structures in this image are quite complex and they defy
the simple, line drawing-like characterization of a “blocks world.” Where in such an
image would one expect an end-stopped neuron to fire? By asking this question, one
could possibly be led to a more ecologically relevant theory of these neurons than
suggested by simple laboratory stimuli.

Another theory bias often embedded in investigations of V1 function is the notion
that simple cells, complex cells, and hypercomplex cells are actually coding for the
presence of edges, corners, or other 2D shape features in images. However, much
of this thinking is derived from a rather ‘cartoon’ view of images. Computer vision
studies provide clear evidence of the fallacy of the purely bottom up approach. One
can not compute the presence even of simple edges of an object purely from the
luminance discontinuities (i.e., using a filter such as a simple or complex cell model).
As an example, Figure 3 demonstrates the result of processing a natural scene with
the standard energy-model of a complex cell. Far from making contours explicit, this
representation creates a cluttered array of orientation signals that make it difficult
to discern what is actually going on in the scene. Our perception of crisp contours,
corners, and junctions in images is largely a posthoc phenomenon that is the result of
massive inferential computations performed by the cortex, which are heavily informed
by context and high-level knowledge. It could well be that our initial introspections
about scene structure are a poor guide as to the actual problems faced by the cortex.

In order to properly understand V1 function, our theories will need to be guided
by functional considerations and an appreciation for the ambiguities contained in
natural images, rather than being biased by simplistic notions of feature detection
that are suggested by the responses of a select population of neurons recorded using
simplified stimuli. One of the most challenging problems facing the cortex is that of
inferring a representation of 3D surfaces from the 2D image (Nakayama et al. 1995;
see also sec. 3.4 below). This is not an easy problem to solve, and it still lies beyond
the abilities of modern computer vision. It seems quite likely that V1 plays a role
in solving this problem, but understanding how it does so will require going beyond
bottom-up filtering models to consider how top-down information is utilized in the
interpretation of images (Olshausen, 2003; Lee & Mumford, 2003; see also sec. 3.5
below).
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Figure 3: A natural scene (left), and an expanded section of it (middle). Far right shows
the information conveyed by an array of model complex cells at four different orientations.
The length of each line indicates the strength of response of a model complex cell at that
location and orientation. The solid gray line shows the location of the boundary of the log
in the original image. Note that very few complex cells of the appropriate orientation are
responding along this contour.

2.4 Interdependence and contextual effects

It has been estimated that roughly 5% of the excitatory input in layer 4 of V1 arises
from the LGN, with the majority resulting from intracortical inputs (Peters & Payne
1993; Peters et al. 1994). Thalamocortical synapses have been found to be stronger,
making them more likely to be effective physiologically (Ahmed et al., 1994). Nev-
ertheless, based on visually evoked membrane potentials, Chung and Ferster (1998)
have argued that the geniculate input is responsible for just 35% of a layer 4 neurons
response. This leaves 65% of the response determined by factors outside of the direct
feedforward input. Using optical imaging methods, Arieli et al. (1996) showed that
the population ongoing activity can account for 80% of an individual V1 neuron’s
response variance, and recent work using multi-electrode arrays has shown that the
ongoing activity V1 neurons is only slightly modified by visual input (Fiser et al.,
2004). Thus, we are left with the real possibility that somewhere between 60-80% of
the response of a V1 neuron is a function of other V1 neurons, or inputs other than
those arising from LGN.

It should also be noted that recent evidence from the early blind has demonstrated
that primary visual cortex has the potential for a wide range of multi-modal input.
Sadato et al (1996) and Amedi et al (2003) demonstrated that both tactile Braille
reading and verbal material can activate visual cortex in those that have been blind
from an early age, even though no such activation occurs in those with normal sight.
This implies that in the normal visual system, primary visual cortex has the potential
for interactions with quite high-level sources of information.

That V1 neurons are influenced by context—i.e., the spatio-temporal structure
outside of the classical receptive field (CRF)—is by now well known and has been the
subject of many investigations over the past decade. Knierim & Van Essen (1992)
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showed that many V1 neurons are suppressed by a field of oriented bars outside the
classical receptive field of the same orientation, and Sillito et al. (1995) have shown
that one can introduce quite dramatic changes in orientation tuning based on the
orientation of gratings outside the CRF. Other investigators have probed the spatial
specificity of the surround using grating patches and demonstrated fairly specific
zones of suppression (Walker et al. 1999; Cavanagh et al. 2002b). And these studies,
in addition to others (see Series et al. (2003) for a review), have likely tapped only a
portion of the interdependencies and contextual effects that actually exist.

The problem in teasing apart contextual effects in such a piecemeal fashion is that
one faces a combinatorial explosion in the possible spatial and featural configurations
of surrounding stimuli such as bars or gratings. What we really want to know is
how neurons respond within the sorts of context encountered in natural scenes. For
example, given the results of Knierim & Van Essen (1993) using bar stimuli, or Sillito
et al. (1995) using gratings, what should we reasonably expect to result from the sorts
of context seen in the natural scene of Figure 3? Indeed, it is not even clear whether
one can answer the question since the contextual structure here is so much richer and
more diverse than that which has been explored experimentally. Some of the initial
studies exploring the role of context in natural scenes have demonstrated pronounced
nonlinear effects that tend to sparsify activity in a way that would have been hard to
predict from the existing reductionist studies (Vinje & Gallant, 2000). More studies
along these lines are needed, and most importantly, we need to understand how and
why the context in natural scenes produces such effects.

Another striking form of interdependence exhibited by V1 neurons is in the syn-
chrony of activity. Indeed, the fact that one can even measure large-scale signals
such as the local field potential or EEG implies that large numbers of neurons must
be acting together. Gray et al. (1989) demonstrated gamma-band synchronization
between neurons in cat V1 when bars moved through their receptive fields in simi-
lar directions, suggesting that synchrony is connected to a binding or segmentation
process. More recently, Wörgötter et al. (1998) have shown that receptive field sizes
change significantly with the degree of synchrony exhibited in the EEG, and Mal-
donado et al. (2004) have shown that periods of synchronization preferentially occur
during periods of fixation as opposed to during saccades or drifts. However, what role
synchrony plays in the normal operation of V1 neurons is entirely unclear, and it is
fair to say that this aspect of response variance remains a mystery.

2.5 Ecological deviance

We have argued above for experiments that measure the responses of neurons in
ecological conditions even when no model is capable of predicting the results—or we
should say, “especially if no model can predict the results.” Publishing findings only
in conditions when a particular model works would be poor science. It is important to
know not only where the current models can successfully predict neural behavior, but
also under what conditions they break down and why. And as we have emphasized
above, it is most important to know how they fare under ecological conditions. If
the current models fail to predict neural responses under such conditions, then the
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literature should reflect this.
In the last few years, a number of labs have begun using natural scenes as stimuli

when recording from neurons in the visual pathway (Dan et al. 1996; Baddeley et
al. 1996; Keysers et al 2001; Vinje & Gallant 2002; Ringach et al., 2002; Smyth et
al. 2003; David et al. 2004). In particular, the Gallant lab at UC Berkeley has taken
the approach of attempting to determine how well one can predict the responses of
V1 neurons to natural stimuli using a variety of different models. However, assessing
how well these models fare, and what it implies about our current understanding of
V1, is difficult for at least three reasons.

First, one must make several assumptions (either implicitly or explicitly) regarding
what aspects of the response are relevant to the model. Spike counts will show
significant variability over repeated trials (Tohurst et al., 1983). One can take the
average over a number of presentations, but this implicitly assumes that the variability
can be attributed to noise. This can be questioned, especially considering that in
many cases individual spikes have been shown to have relatively high reliability (Rieke
et al., 1997). The trial-to-trial variability could well be due to internally generated
dynamics that plays an important role in information processing that we simply do
not as yet understand (Arieli et al., 1996; Fiser et al., 2004; see also Section 3.1).
Furthermore, to take averages, one must make assumptions regarding the temporal
window over which the average is computed.

Secondly, these studies are best performed with an awake, behaving animal. In
such conditions, there are limitations to the spatial and temporal accuracy with which
the gaze can be measured. When averaging across presentations of stimuli, an as-
sumption must be made as to whether the same stimulus was actually presented.
Again, one must make an assumption as to what spatio-temporal window to use.

The third problem is that whatever model is chosen, one is always subject to the
criticism that the model is not sufficiently elaborate. Thus, any inability to predict
the neurons response might be argued to be simply due to some missing element in
the model.

For example, David, Vinje & Gallant (2004) have explored two different types
of models—a linearized spatiotemporal receptive field model, in which the neuron’s
response is essentially a weighted sum of the image pixels over space and time, and
a “phase-separated Fourier model” which allows one to capture the phase invariance
non-linearity of a complex cell. These models can typically explain between 20-
40% of the response variance. Correcting for inter-trial variability improves matters
somewhat (David et al., 2004), and it is possible that with more trials, and with
the addition of other non-linearities such as contrast normalization, adaptation, and
response saturation, the fraction of variance explained could rise even more above
these levels (and this is a current direction of these studies).

We believe such reports are critically important for several reasons. First, such
results create a benchmark for showing how well the standard or basic models ac-
tually predict ecologically relevant data. Secondly, these are well-established models
that have been given a fair run for their money. One could imagine any number of
improvements to these models, and it will be interesting to see if they fare better, but
in the meantime these results provide a useful baseline for comparison. Furthermore,
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these are the data that represent the ultimate goal of any computational model, and
so they are crucial to presenting a complete picture of V1 function. Given the na-
ture of the errors, as discussed below, we do not believe that the addition of simple
response nonlinearities such as contrast normalization are likely to improve matters
much. Given these results with both linear and Fourier power models, we conjec-
ture the best-case scenario is that the percentage of variance explained is likely to
asymptote at 30-40% with the standard model.

One of the reasons for our pessimism is due to the way in which these models fail.
For example, Figure 4 shows data collected from the lab of Charles Gray at Montana
State University, Bozeman, in which the activities of V1 neurons in anaesthetized cat
are recorded in response to repeated presentations of a natural movie (C.M. Gray, J.
Baker, S.C. Yen, personal communication, 2004). Shown (Fig. 4a) is the peristimulus
time histogram (PSTH) of a typical V1 simple cell, whose receptive field as measured
from an M-sequence kernel is similar to those found in the literature—i.e., a Gabor-
like function that translates over time (i.e., space-time inseparable). Superimposed
on this is the predicted response generated by convolving the neurons space-time
receptive field (Fig. 4b) with the movie, and putting the result through a point-wise
non-linearity (including a gain factor and offset term). The neuron tends to exhibit
sparse, punctate responses, some of which are predicted by the receptive field model,
others not. In most cases the model response undershoots the PSTH, and this can not
simply be addressed by increasing the gain or narrowing the response of the model,
because there are many other episodes where the model predicts responses of equal
magnitude in which there is little or no response from the neuron. One could possibly
obtain a better fit to the data by including additional terms modeling suppression
(Rust et al., 2004) and temporal adaptation (Lesica et al. 2003), or even a spiking
mechanism (Paninski et al., 2004), but we believe it is useful to see how much the
linear, driving term of the model alone fares under these circumstances. Moreover,
these additions are essentially single-neuron mechanisms. What seems to be suggested
by our initial informal observations of multiple simultaneously recorded units is that
a more complex, network non-linearity is at work here, and that describing any one
neuron’s behavior will require one to include the influence of other simultaneously
recorded neurons.

An important lesson of these findings is that simply mapping out receptive fields
does not provide a complete understanding of V1 response properties. For example,
Ringach et al. (2002) have shown that it is possible to map out receptive fields
using natural scenes, and they show that it is even possible to recover some non-
linear effects such as cross-orientation inhibition with this technique. However, the
resulting receptive field models were not tested by comparing their predictions to
the actual activity of neurons in response to natural movies. Without doing so, it is
difficult assess how well such models capture the function of the neuron.

Unfortunately, journals are often unprepared to publish results when a study
demonstrates the failure of a model, unless the study also presents a competing model
which works well. Part of this may seem understandable since there are a variety of
reasons a model might fail. However, until a benchmark is placed into the literature, it
is impossible to determine how ‘good a model actually is. And given the magnitude of
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Figure 4: Activity of a V1 neuron in anaesthetized cat in response to a natural movie.
A. The PSTH of the neuron’s response (dashed line), together with the predicted response
(solid line) generated from the model: r̂(t) = α h(

∑
x k(x, t) ∗ I(x, t) + θ)p + r0. The

function h( ) is a half-wave rectifying function, and the parameters α, p, θ, and r0 are fit
to minimize the squared error with the data. The resulting correlation coefficient in this
case is 0.36. Average spike counts were obtained by averaging across 100 trials in 35 ms
bins (corresponding to the frame rate). B. The kernel k(x, t) was measured via reverse
correlation with an m-sequence, and is shown here as a series of frames in 35 ms intervals,
with the center time of the interval displayed above each frame.
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Table 1: Five problems with the current view of V1 and some possible solutions for ob-
taining a more complete picture.

the task before us, it could take years before a good model emerges. In the meantime,
what would be most helpful is to accumulate a database of single unit or multi-unit
data (stimuli and neural responses) that would allow modelers to test their best theory
under ecological conditions.

Finally, it should be noted that better success has been obtained in using receptive
field models to predict the responses of neurons to natural scenes in the LGN (Dan
et al., 1996), or the response of cortical neurons to purely static images (Smyth et
al., 2003), although they are still far from making perfect predictions. This would
seem to suggest that much of the difficulty in predicting responses in cortex has to
do with the effects of the massive, recurrent intra-cortical circuitry that is engaged
during natural vision.

2.6 Summary

Table 1 presents a summary of the five problems we have identified with the current
view of V1 that has emerged from the data collected to date, along with some of the
solutions that we have suggested could possibly help in obtaining a more complete
picture of V1 function.

Given the limitations described above, is it possible to quantify how well we cur-
rently understand V1 function? We attempt to estimate this as follows:

[fraction understood] =

fraction of variance ex-
plained from neurons
recorded

 ×
[
fraction of population
recorded

]

If we consider that roughly 40% of the population of neurons in V1 has actually been
recorded from and characterized, together with our conjecture that 30-40% of the
response variance of these neurons can be explained under natural conditions using
the currently established models, then we are left to conclude that we can currently
account for 12-16% of V1 function. Thus, approximately 85% of V1 function has yet
to be explained (see Figure 5).2

2We have primarily drawn upon the Gallant lab’s data for obtaining the percentage
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Figure 5: 85% of V1 function remains to be understood.

3 New theories

Given the above observations, it becomes clear that there is so much unexplored
territory that it is very difficult to rule out theories at this point (although there
are some obvious bounds dictated by neural architecture—e.g., fan-in/fan-out, the
spatial extent of axonal and dendritic arbors, etc.). In the sections below, we discuss
some of the theories that are plausible given our current data. However, the goal here
is not to provide a detailed review of the theories currently in the literature. Rather,
the goal is to provide a few examples of the range of theories that are consistent
with the experimental data. It must be emphasized that considering that there may
exist a large family of neurons with unknown properties, and given the low level
of prediction for the neurons studied, there is still considerable room for theories
dramatically different than those theories presented here.

3.1 Dynamical systems and the limits of prediction.

Imagine tracking a single molecule within a hot gas as it interacts with the surrounding
molecules. The particular trajectory of one molecule will be erratic and fundamentally
unpredictable without knowledge of all other molecules with potential influence. Even
if we presumed the trajectory of the particular molecule was completely deterministic
and following simple laws, in a gas with large numbers of interacting molecules one
could never provide a prediction of the path of a single molecule except over very
short distances.

of variance explained, and so we are assuming that their methods for isolating neurons
are subject to the same biases in sampling discussed earlier.
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In theory, the behavior of single neurons may have similar limitations. To make
predictions of what a single neuron will do in the presence of a natural scene may
be fundamentally impossible without knowledge of the surrounding neurons. The
non-linear dynamics of interacting neurons may put bounds on how accurately the
behavior of any neuron can be predicted. And at this time, we cannot say where that
limit may be.

What is fascinating in many ways then is that neurons are as predictable as they
are. For example, work from the Gallant lab has shown that under conditions where a
particular natural scene sequence is repeated to a fixating macaque monkey, a neuron’s
response from trial-to-trial is fairly reliable (e.g., Vinje & Gallant, 2000). This clearly
suggests that the response is dependent in large part on the stimulus, certainly more
than a molecule in the “gas model.” So how do we treat the variability that is not
explained by the stimulus? We may find that the reliability of a local group of neurons
is more predictable than a single neuron, which would then require multi-electrode
recording to attempt to account for the remaining variance. For example, Arieli et al.
(1996) have shown that much of the inter-trial variability may be explained in terms of
large-scale fluctuations in ongoing activity of the surrounding population of neurons
measured using optical recording, and Fiser et al. (2004) have similarly shown that
ongoing population activity as measured with multi-electrode arrays is only loosely
modulated by visual input. However, what role these large-scale fluctuations play in
the normal processing of natural scenes has yet to be investigated.

3.2 Sparse, overcomplete representations

One effort to explain many of the non-linearities found in V1 is based on the idea that
neurons are attempting to achieve some degree of gain control (Geisler & Albrecht
1992). Because any single neuron lacks the dynamic range to handle the range of
contrasts in natural scenes, it is argued, the contrast response must be normalized.
Here we provide a different line of reasoning to explain the observed response non-
linearities of V1 neurons (further details are provided by Olshausen & Field, 1997,
and Field & Wu, 2004). We argue that the spatial non-linearities primarily serve to
reduce the linear dependencies that exist in an overcomplete code, and as we shall
see this leads to a fundamentally different set of predictions about the population
activity.

Consider the number of vectors needed to represent a particular set of data with
dimensionality D (e.g., an 8 x 8 pixel image patch would have D = 64). No matter
what form the data takes, such data never requires more than D linearly independent
vectors to represent it. A system where data with dimensionality D is spanned by
D vectors is described as “critically sampled.” Such critically sampled systems (e.g.,
orthonormal bases) are popular in the image coding community as they allow any
input pattern to be represented uniquely, and the transform and its inverse are easily
computed. The wavelet code, for example, has seen widespread use, and wavelet-
like codes similar to that of the visual system have been shown to provide very high
efficiency, in terms of sparsity, when coding natural scenes (e.g., Field, 1987). Some
basic versions of ICA also attempt to find a critically sampled basis which minimizes
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the dependencies among the vectors, and the result is a wavelet-like code with tuning
much like the neurons in V1 (Bell and Sejnowski, 1997; van Hateren & van der Schaaf
1998).

However, the visual system is not using a critically sampled code. In cat V1,
for example, there are 25 times as many output fibers as there are input fibers from
the LGN, and in macaque V1 the ratio is on the order of 50:1. Such overcomplete
codes have one potential problem: the vectors are not linearly independent. Thus, if
neurons were to compute their output simply from the inner-product between their
weight vector and the input, their responses will be correlated.

Figure 6a shows an example of a two-dimensional data space represented by three
neurons with linearly dependent weight vectors. Even assuming the outputs of these
units are half-rectified so they produce only positive values, the data are redundantly
represented by such a code. The only way to remove this linear dependence is through
a non-linear transform. One of the non-linear transforms that will serve this goal
is shown in Figure 6b. Here, we show the iso-response curves for the same three
neurons. This curvature represents an unusual non-linearity. For example, consider
the responses of a unit to two different stimuli: the first stimulus aligned with the
neuron’s weight vector, and a second stimulus separated by 90 degrees. The second
stimulus will have no effect on the neuron on its own since its vector is orthogonal to
that of the neuron. However, when added to the first vector, the combined stimulus
will be on a lower iso-response curve (i.e. the neuron will have reduced its activity). In
other words, the response curvature of the neuron results in a non-linearity with the
characteristic “non-classical,” suppressive behavior: Stimuli which on their own have
no affect on the neuron (stimuli orthogonal to the principal direction of the neuron),
can modulate the behavior of an active neuron. This general non-linearity comes
in several forms and includes end-stopping and cross orientation inhibition, and is
what is typically meant by the term “non-classical surround.” Indeed, as Zetzsche et
al (1999) note, this curvature is simply a geometric interpretation of such behaviors.
With the addition of a compressive non-linearity this curvature results in the behavior
described as “contrast normalization.”

In contrast to the gain control or divisive normalization theory, we argue that
the non-linearities observed in V1 neurons are present primarily to allow a large
(overcomplete) population of neurons to represent data using a small number of active
units, a process we refer to as “sparsification.” The goal is not to develop complete
independence, as the activity of any neuron partially predicts the lack of activity in
neighboring neurons. However, the code allows for expanding the dimensionality of
the representation without incurring the linear dependencies that would be present
in a non-orthogonal code.

Importantly, this model predicts that the non-linearities are a function of the angle
between the neuron’s weight vector and those surrounding it. Future multi-electrode
recordings may provide the possibility to test this theory. From the computational
end, we have found that our sparse coding network (Olshausen & Field, 1996; 1997)
produces non-linearities much like those proposed. Our hope, then, is that many of
the non-linearities that have been observed in V1 can eventually be explained within
one general framework of efficient coding.
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Figure 6: Overcomplete representation. A. Shown are the iso-response contours of three
linear neurons (with half-wave rectification) having linearly dependent weight vectors. A
stimulus falling anywhere along a given contour will result in the same response from the
neuron. A stimulus falling in the upper half-plane will result in responses on all three
neurons, even though only two would be required to uniquely determine its position in the
space. B. Curving the response contours removes redundancy among these neurons. Now
only two neurons will code for a stimulus anywhere in this space. C. A full tiling of the 2D
stimulus space now requires eight neurons, which would be overcomplete as a linear code,
but critically sampled given this form of non-linear response.

3.3 Contour integration

There is now considerable physiological and anatomical evidence showing that V1
neurons have a rather selective connection pattern both within layers and between
layers. For example, research investigating the lateral projections of pyramidal neu-
rons in V1 has shown that the long range lateral connections project primarily to
regions of the cortex with similar orientation columns, as well as to similar ocular
dominance columns and cytochrome oxidase blobs (Malach et al., 1993; Yoshioka et
al., 1996). Early studies exploring the horizontal connections in V1 discovered that
selective long range connections extend laterally for 2 to 5 mm parallel to the surface
(Gilbert and Wiesel, 1979), and studies on the tree shrew (Rockland and Lund, 1982;
Bosking et al., 1997), primate (e.g., Malach et al., 1993; Sincich & Blasdel, 2001),
ferret (Ruthazer & Stryker, 1996), and cat (e.g., Gilbert & Weisel, 1989) have all
demonstrated significant specificity in the projection of these lateral connections. A
number of neurophysiological studies also show that co-linearly oriented stimuli pre-
sented outside of the classical receptive field have a facilitatory effect (Kapadia et al.,
1995; Kapadia et al., 2000; Polat et al. 1998). The results demonstrate that when
a neuron is presented with an oriented stimulus within its receptive field, a second
collinear stimulus will sometimes increase the response rate of the neuron while the
same oriented stimulus presented orthogonal to the main axis of orientation (displaced
laterally) will produce inhibition, or at least less facilitation.

These results suggest that V1 neurons have an orientation- and position-specific
connectivity structure, beyond what is usually included in the standard model. One
line of research suggests that this connectivity helps resolve the ambiguity of contours
in scenes and is involved in the process of contour integration (e.g., Field et al 1993).
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This follows from work showing that the amplification of locally co-aligned, oriented
elements provides an effective means of identifying contours in natural scenes (Parent
& Zucker, 1989; Sha’ashua & Ullman, 1988; Ben-Shahar & Zucker 2004). This type
of mechanism could work in concert with the sparsification non-linearities mentioned
above, since the facilitatory interactions would primarily occur among elements that
are non-overlapping—i.e., receptive fields whose weight vectors are orthogonal.

An alternative theoretical perspective is that the effect of these orientation- and
position-specific connections should be mainly suppressive, with the goal of remov-
ing dependencies among neurons that arise due to the structure in natural images
(Schwartz & Simoncelli, 2001). In contrast to the contour integration hypothesis,
which proposes that the role of horizontal connections is to amplify the structure of
contours, this model would attempt to attenuate the presence of such structure in the
V1 representation. Although this may be a desirable outcome in terms of redundancy
reduction, we would argue that the cortex has objectives other than redundancy re-
duction per se (Barlow, 2001). Chief among these is to provide a meaningful represen-
tation of image structure that can be easily read out and interpreted by higher-level
areas.

Finally it is important to note, with respect to the discussion in the previous
section, that the type of redundancy we are talking about here is due to long-range
structure in images beyond the size of a receptive field, not that which is simply due
to the overlap among receptive fields. Thus, we propose that the latter should be
removed via sparsification, while the former should be amplified by the long-range
horizontal connections in V1.

3.4 Surface representation

We live in a three-dimensional world, and the fundamental causes of images that
are of behavioral relevance are surfaces, not two-dimensional features such as spots,
bars, edges, or gratings. Moreover, we rarely see the surface of an object in its
entirety. Occlusion is the rule, not the exception, in natural scenes. It thus seems quite
reasonable to think that the visual cortex has evolved effective means to parse images
in terms of the three-dimensional structure of the environment—i.e., surface structure,
foreground/background relationships, etc. Indeed, there is now a strong body of
psychophysical evidence showing that 3D surfaces and figure-ground relationships
constitute a fundamental aspect of intermediate-level representation in the visual
system (Nakayama et al., 1995; see also Figure 7).

Nevertheless, it is surprising how little V1 physiology has actually been devoted to
the subject of three-dimensional surface representation. Some recent studies in extra-
striate cortex have begun to yield interesting findings (Nguyenkim & DeAngelis, 2003;
Zhou et al., 2000; Bakin et al., 2000), but V1’s involvement in surface representa-
tion remains a mystery. Although many V1 neurons are disparity selective, this by
itself does not tell us how surface structure is represented, nor how figure-ground
relationships of the sort depicted in Figure 7 are resolved.

At first sight it may seem preposterous to suppose that V1 is involved in computing
three-dimensional surface representations. But again, given how little we actually do
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Figure 7: The three line-strokes at left are interpreted as different objects depending on
the arrangement of occluders. Thus, pattern completion depends on resolving figure-ground
relationships. At what level of processing is this form of completion taking place? Since it
would seem to demand access to high-resolution detail in the image, it can not simply be
relegated to high-level areas.

know about V1, combined with the importance of 3D surface representations for
guiding behavior, it is a plausible hypothesis to consider. In addition, problems such
as occlusion demand resolving figure-ground relationships in a relatively high-level
representation where topography is preserved (Lee & Mumford, 2003). There is now
beginning to emerge physiological evidence supporting this idea. Neurons in V1 have
been shown to produce a differential response to the figure vs. background in a scene
of texture elements (Lamme 1995; Zipser et al., 1996), and a substantial fraction of
neurons in V1 are selective to border ownership (Zhou, 2000). In addition, Lee et
al. (1998) have demonstrated evidence for a medial axis representation of surfaces in
which V1 neurons become most active along the skeletal-axis of an object. It seems
quite possible such effects are just the tip of the iceberg, and there could be even
more effects lurking.

3.5 Top-down feedback and disambiguation

Although our perception of the visual world is usually quite clear and unambiguous,
the raw image data that we start out with is not. Looking back at Figure 3, one can
see that even the presence of a simple contour can be ambiguous in a natural scene.
The problem is that information at the local level is insufficient to determine whether
a change in luminance is due to an object boundary, simply part of a texture, or
a change in reflectance. Although boundary junctions are also quite crucial to the
interpretation of a scene, a number of studies have now shown that human observers
are poor judges of what constitutes a boundary or junction when these features are
shown in isolation (Elder et al., 1999; McDermott, 2004). Thus, the calculation of
what forms a boundary is dependent on the context, which provides information
about the assignment of figure and ground, surface layout, and so forth.

Arriving at the correct interpretation of an image, then, constitutes something
of a chicken-egg problem between lower and higher levels of image analysis. The
low-level shape features that are useful for identifying an object—edges, contours,
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surface curvature and the like—are typically ambiguous in natural scenes, so they
cannot be computed directly based on a local analysis of the image. Rather, they
must be inferred based on global context and higher-level knowledge. However, the
global context itself will not be clear until there is some degree of certainty about
the presence of low-level shape features. A number of theorists have thus argued
that recognition depends on information circulating through cortico-cortical feedback
loops in order to disambiguate representations at both lower and higher levels in
parallel (Mumford 1994; Ullman 1995; Lewicki & Sejnowski 1996; Rao & Ballard
1999; Young 2000; Lee & Mumford 2003; Hawkins & Blakeslee 2004).

An example of disambiguation at work in the visual cortex can be seen in the
resolution of the aperture problem in computing the direction of motion. Because
receptive fields limit the field of a view of a neuron to just a portion of an object, it
is not possible for any one neuron to signal with certainty the true direction of the
object in a purely bottom up fashion. Pack, Berezovskii & Born (2001) have shown
that the initial phase of response of neurons in MT signals the direction of motion
directly orthogonal to a contour, and that the latter phase of the response reflects
the actual direction of the object that the contour is part of, presumably from the
interaction with other neurons viewing other parts of the object. Interestingly, this
effect does not occur under anaesthesia. A similar delayed response effect has been
demonstrated in end-stopped V1 neurons as well (Pack et al., 2003).

Recent evidence from fMRI points to a disambiguation process occurring in V1
during shape perception (Murray et al., 2002). Subjects viewed a translating diamond
that was partially occluded so that the vertices are invisible, resulting in a bistable
percept in which the line segments forming the diamond are seen moving indepen-
dently in one case, and coherently in the direction of the object motion in the other
case. When subjects experience the coherent motion and shape percept, activity in
the lateral occipital complex (LOC) increases while activity in V1 decreases. This is
consistent with the idea that when neurons in LOC are representing the diamond,
they feed back this information to V1 so as to refine the otherwise ambiguous rep-
resentations of contour motion. If the refinement of activity attenuates the many
incorrect responses while amplifying the few that are consistent with the global per-
cept, the net effect could be a reduction as seen in the BOLD signal measured by
fMRI. An alternative interpretation for the reduction in V1 is based on the idea of
predictive coding (Rao & Ballard 1999), in which higher areas actually subtract their
predictions from lower areas.

There exists a rich set of feedback connections from higher levels into V1, but little
is known about the computational role of these connections. Recent experiments in
which higher areas are cooled to look at the effect upon activity in lower areas seem to
suggest that these connections play a role in enhancing the salience of stimuli (Hupe
et al., 1998), and Shapley (2004) has concluded that top-down feedback is necessary
to account for the spatial extent of surround inhibition. But we would argue that
feedback has a far more important role to play in disambiguation, and as far as we
know, no one has yet investigated the effect of feedback using such cooling techniques
under normal conditions that would require disambiguation (e.g., natural scenes).
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3.6 Dynamic routing

A challenging problem faced by any visual system is that of forming object representa-
tions that are invariant to position, scale, rotation, and other common deformations
of the image data. The currently accepted, traditional view is that complex cells
constitute the first stage of invariant representation by summing over the outputs of
simple-cells whose outputs are half-rectified and squared—i.e., the classical “energy
model” (Adelson & Bergen 1985). In this way, the neuron’s response changes only
gradually as an edge is passed over its receptive field. This idea forms the basis of
so-called “Pandemonium models,” in which a similar feature extraction and pooling
process is essentially repeated at each stage of visual cortex (see Tarr (1999) for a
review).

However, the Pandemonium model can not provide a complete account of per-
ception because it does not preserve information about relative phase or the spatial
relationships among features. Clearly, though, we have conscious access to this in-
formation. The ability to navigate, grasp, and interact with foreign objects implies
that we have the ability to perceive spatial relationships among features without ever
doing “object recognition.” In addition, resolving figure/ground relationships and
occlusion demands that higher levels of analysis have access to information about
spatial relationships as well.

One of us has proposed a model for forming invariant representations that pre-
serves relative spatial relationships by explicitly routing information at each stage
of processing (Olshausen et al. 1993). Rather than passively pooling, information is
dynamically linked from one stage to the next by a set of control neurons that progres-
sively remap information into an object-centered reference frame. It is thus proposed
that there are two distinct classes of neurons—those conveying image/feature infor-
mation, and those controlling the flow of information. The former corresponds to
the invariant part, the latter to the variant part. The two are combined multiplica-
tively, so that mathematically it is equivalent to a bilinear model (e.g., Tenenbaum
& Freeman, 2000; Grimes & Rao, 2005).

Is it possible that dynamic routing occurs in V1 and underlies the observed shift-
invariant properties of complex cells? If so, there are at least two things we would
expect to see: 1) that at any given moment a complex cell is effectively connected to
only one or a small fraction of simple cells to which it is physically connected, and
2) that there are control neurons which dynamically gate these connections. Interest-
ingly, the observed invariance properties of complex cells are just as consistent with
the idea of routing as they are with pooling. What could possibly distinguish between
these models is to look at the population activity: if the complex cell outputs are the
result of passive pooling, then one would expect a dense, distributed representation of
contours among the population of complex cells. If information is dynamically routed,
though, the representation at the complex cell level would remain sparse. The control
neurons, on the other hand, would look something like contrast normalized simple
cells, which represent phase independent of magnitude (Zetzsche & Rohrbein, 2001).

One of the main predictions of the dynamic routing model is that the receptive
fields of the invariant neurons would be expected to shift depending on the state of
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the control neurons. Such effects have been seen in V4, where some neurons shift
their receptive fields depending on where the animal is directing its attention (Moran
& Desimone, 1985; Connor et al., 1997. And in V1, Brad Motter has shown that
neurons appear to shift their receptive fields in order to compensate for the small
eye movements that occur during fixation (Motter & Poggio, 1990; Motter, 1995),
although Gur & Snodderly (1997) provide evidence to the contrary. Thus, there
exists some evidence for dynamic routing in visual cortex, but further experiments
are needed in order to characterize how and to what extent this occurs in V1 under
normal viewing conditions.

4 Conclusions

Our goal in this article has been to point out that there are still substantial gaps in
our knowledge of V1 function, and more importantly, that there is more room for new
theories to be considered than the current conventional wisdom might allow. We have
identified five specific problems with the current view of V1, emphasizing the need
for using natural scenes in experiments, in addition to multi-unit recording methods,
in order to obtain a more representative picture of V1 function. While the single-
unit, structuralist approach has been a useful enterprise for getting a handle on basic
response properties, we feel that its usefulness as a tool for investigating V1 function
has been nearly exhausted. It is now time to dig deeper, using richer, ecologically
relevant experimental paradigms, and developing theories that can help to elucidate
how the cortex performs the computationally challenging problems of vision.

As we explore the response properties of V1 neurons using natural scenes, we are
likely to uncover some interesting new phenomena that defy explanation with current
models. It is at this point that we should be prepared to revisit the structuralist
approach in order to tease apart what is going on. Reductionism does have its place,
but it needs to be motivated by functionally and ecologically relevant questions,
similar to the European tradition in ethology (Tinbergen, 1972).

At what point will we actually understand V1? This is obviously a difficult ques-
tion to answer, but we believe at least three ingredients are required: 1) an unbiased
sample of neurons of all types, firing rates, and layers of V1, 2) the ability to observe
simultaneously the activities of hundreds of neurons in a local population, and 3)
the ability to predict, or at least qualitatively model, the responses of the population
under natural viewing conditions. Given the extensive feedback connections into V1,
in addition to the projections from pulvinar and other sources, it seems unlikely that
we will ever understand V1 in isolation. Thus, our investigations must also be guided
by how V1 fits into the bigger picture of thalamo-cortical function.

5 Acknowledgments

We thank Bill Skaggs for discussions on hippocampal physiology, Charlie Gray and
Jonathan Baker for sharing preliminary data, Jack Gallant for clarifying the issues in-
volved in predicting neural responses, and Jeff Johnson and Issac Trotts for comments

25



on the manuscript. We also thank the two anonymous reviewers for providing many
useful suggestions and pointers to relevant literature. Supported by NGIA grant HM
1582-05-C-0007 to DJF.

6 References

Adelson E. H., Bergen J. R. (1985) Spatiotemporal energy models for the perception of
motion. Journal of the Optical Society of America, A, 2, 284-299.

Ahmed B., Anderson J. C., Douglas R. J., Martin K. A., Nelson J. C. (1994) Polyneuronal
innervation of spiny stellate neurons in cat visual cortex. J Comp Neurol. 341, 39-49.

Amedi A., Raz N., Pianka P., Malach R., Zohary E. (2003) Early ’visual’ cortex activation
correlates with superior verbal memory performance in the blind. Nat Neurosci. 6,
758-66.

Anderson S. J., Burr D. C., Morrone M. C. (1991) Two-dimensional spatial and spatial-
frequency selectivity of motion-sensitive mechanisms in human vision. Journal of the
Optical Society of America A, 8, 1340-1351.

Arieli A., Sterkin A., Grinvald A., Aertsen A. (1996). Dynamics of ongoing activity:
Explanation of the large variability in evoked cortical responses. Science, 273, 1868-
71.

Attwell D., Laughlin S. B.(2001) An energy budget for signaling in the grey matter of the
brain. J Cereb Blood Flow Metab. 21, 1133-45.

Azouz R., Gray C. M. (2000) Dynamic spike threshold reveals a mechanism for synaptic
coincidence detection in cortical neurons in vivo. Proc Natl Acad Sci U S A. 97,
8110-5.

Azouz R., Gray C. M. (2003) Adaptive coincidence detection and dynamic gain control in
visual cortical neurons in vivo. Neuron 37, 513-23.

Baddeley R., Abbott L. F., Booth M. C. A., Sengpiel F., Freeman T., Wakeman E. A.,
Rolls E. T. (1997) Responses of neurons in primary and inferior temporal visual
cortices to natural scenes. Proc R. Soc. Lond. B, 264, 1775-1783.

Bakin J. S., Nakayama K., Gilbert C. D. (2000) Visual responses in monkey areas V1 and
V2 to three-dimensional surface configurations. J Neurosci, 20, 8188-98.

Barlow H. B. (2001) Redundancy reduction revisited. Network: Computation in Neural
Systems, 12, 241-253.

Barnes C. A., Skaggs W. E., McNaughton B. L., Haworth M. L., Permenter M., Archibeque
M., Erickson C. A. (2003) Chronic recording of neuronal populations in the temporal
lobe of awake young adult and geriatric primates. Program No. 518.8. Abstract
Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience.

Bell A. J., Sejnowski T. J. (1997) The independent components of natural images are edge
filters, Vision Research, 37, 3327-3338.

26



Ben-Shahar O., Zucker S. W. (2004) Geometrical Computations Explain Projection Pat-
terns of Long-Range Horizontal Connections in Visual Cortex. Neural Computation,
16, 445-476.

Blakemore C., Campbell F. W. (1969) On the existence of neurones in the human visual
system selectively sensitive to the orientation and size of retinal images. J Physiol.
203, 237-60.

Bosking W. H., Zhang Y., Schofield B., and Fitzpatrick D. (1997) Orientation selectivity
and the arrangement of horizontal connections in Tree Shrew striate cortex. The
Journal of Neuroscience 17, 2112-2127.

Carandini M., Heeger D. J., Movshon J. A. (1997) Linearity and normalization in simple
cells of the macaque primary visual cortex. The Journal of Neuroscience, 17, 8621-
8644.

Cavanaugh J. R., Bair W., Movshon J. A. (2002a) Nature and interaction of signals from
the receptive field center and surround in macaque V1 neurons. J Neurophys. 88,
2530-2546.

Cavanaugh J. R., Bair W., Movshon J. A. (2002b) Selectivity and spatial distribution of
signals from the receptive field surround in macaque V1 neurons. J Neurophys. 88,
2547-2556.

Chung S., Ferster D. (1998) Strength and orientation tuning of the thalamic input to
simple cells revealed by electrically evoked cortical suppression. Neuron 20, 1177-89.

Connor C. E., Preddie D. G., Gallant J. L., Van Essen D. C. (1997). Spatial attention
effects in macaque area V4. J. Neurosci. 17, 3201-3214.

Dan Y, Atick JJ, Reid RC (1996) “Efficient coding of natural scenes in the lateral geniculate
nucleus: experimental test of a computational theory,” Journal of Neuroscience, 16:
3351-62.

David S. V., Vinje W. E., Gallant J. L. (2004) Natural stimulus statistics alter the receptive
field structure of V1 neurons. J Neurosci., 24, 6991-7006.

De Valois R. L., Albrecht D. G., Thorell L. G. (1982) Spatial frequency selectivity of cells
in macaque visual cortex. Vision Res, 22: 545-559.

Edin F., Machens C. K., Schutze H., Herz A. V. (2004) Searching for optimal sensory
signals: iterative stimulus reconstruction in closed-loop experiments. J Comput Neu-
rosci., 17, 47-56.

Elder J. H., Beniaminov D., Pintilie G. (1999) Edge classification in natural images. In-
vestigative Ophthalmology and Visual Science, 40, S357.

Field D. J. (1987) Relations between the statistics of natural images and the response
properties of cortical cells. J Opt Soc Am, A, 4: 2379-2394.

Field D. J., Tolhurst D. (1986) The structure and symmetry of simple-cell receptive-field
profiles in the cat’s visual cortex. Proc R Soc Lond B Biol Sci., 228, 379-400.

27



Field D. J., Hayes A., and Hess R. F. (1993) Contour integration by the human visual
system: evidence for a local ’association field’. Vision Research 33, 173-193.

Field D. J., Wu M. (2004) An attempt towards a unified account of non-linearities in visual
neurons. Journal of Vision, 4, p. 283a.

Fiser J., Chiu C., Weliky M. (2004) Small modulation of ongoing cortical dynamics by
sensory input during natural vision. Nature, 431, 573-578.

Foldiak P., Xiao D., Keysers C., Edwards R., Perrett D. I. (2004) Rapid serial visual
presentation for the determination of neural selectivity in area STSa. Prog Brain
Res., 144, 107-16.

Geisler W. S., Albrecht D. G. (1992) Cortical neurons: Isolation of contrast gain control.
Vision Research, 32, 1409-1410.

Geisler W. S., Albrecht D. G. (1997) Visual cortex neurons in monkeys and cats: Detection,
discrimination and identification. Visual Neuroscience, 14, 897-919.

Gilbert C. D., Wiesel T. N. (1979). Morphology and intracortical projections of function-
ally characterised neurones in the cat visual cortex. Nature 280, 120-125.

Gilbert C. D., Wiesel T. N. (1989). Columnar specificity of intrinsic horizontal and cor-
ticocortical connections in cat visual cortex. J.Neurosci., 9, 2432-2442.

Graham N., Nachmias J. (1971) Detection of grating patterns containing two spatial fre-
quencies: A test of single-channel and multiple-channels models. Vision Research,
11, 251-259.

Gray C. M., Konig P., Engel A. K., Singer W. (1989). Oscillatory responses in cat visual
cortex exhibit inter-columnar synchronization which reflects global stimulus proper-
ties. Nature 338, 334-7.

Grimes D. B., Rao R. P. (2005) Bilinear sparse coding for invariant vision. Neural Comput.,
17, 47-73.

Gur M., Snodderly D. M. (1997) Visual receptive fields of neurons in primary visual cortex
(V1) move in space with the eye movements of fixation. Vision Res., 37, 257-65.

Hausser M., Mel B. (2003). Dendrites: bug or feature? Current Opinion in Neurobiology,
13, 372-83.

Hawkins J., Blakeslee S. (2004) On Intelligence. New York: Henry Holt.

Heeger D. J. (1991) Computational model of cat striate physiology. In: Computational
Models of Visual Perception, ed. Landy MS, Movshon A. pp. 119-133. Cambridge,
Massachusetts: MIT Press.

Heeger D. J., Bergen J. R. (1995) Pyramid based texture analysis/synthesis. Computer
Graphics Proceedings, August, pp. 229-238.

Hubel D. H., Wiesel T. N. (1959) Receptive fields of single neurones in the cat’s striate
cortex. J Physiol., 148, 574-91.

28



Hubel D. H., Wiesel T. N. (1968) Receptive fields and functional architecture of monkey
striate cortex. J Physiol., 195, 215-43.

Hupe, J. M., James A. C., Payne B. R., Lomber S. G., Girard P., Bullier J. (1998) Cortical
feedback improves discrimination between figure and background by V1, V2 and V3
neurons. Nature 394, 784-787.

Jones J. P., Palmer L. A. (1987) An evaluation of the two-dimensional Gabor filter model
of simple receptive fields in cat striate cortex. J. Neurophysiol., 58, 1233-1258.

Jung M. W., McNaughton B. L. (1993) Spatial selectivity of unit activity in the hippocam-
pal granular layer. Hippocampus, 3, 165-182.

Kagan I., Gur M., Snodderly D. M. (2002) Spatial organization of receptive fields of V1
neurons of alert monkeys: Comparison with responses to gratings. J Neurophysiol,
88, 2557-2574.

Kapadia M. K., Ito M., Gilbert C. D., Westheimer G. (1995) Improvement in visual
sensitivity by changes in local context: parallel studies in human observers and in V1
of alert monkeys. Neuron 15, 843-856.

Kapadia M. K., Westheimer G., Gilbert C. D. (2000) Spatial distribution of contextual
interactions in primary visual cortex and in visual perception. Journal of Neurophys-
iology 84, 2048-2062.

Keysers C., Xiao D. K., Foldiak P., Perrett D. I. (2001) The speed of sight. J Cogn
Neurosci., 13, 90-101.

Knierim J. J., Van Essen D. C. (1992) Neuronal responses to static texture patterns in
area V1 of the alert macaque monkey. J Neurophys., 67, 961-980.

Lamme V. A. (1995) The neurophysiology of figure-ground segregation in primary visual
cortex. J Neurosci.,15, 1605-15.

Lee T. S., Mumford D., Romero R., Lamme V. A. (1998) The role of the primary visual
cortex in higher level vision. Vision Res., 38, 2429-54.

Lee T. S., Mumford D. (2003) Hierarchical Bayesian inference in the visual cortex. J Opt
Soc Am A, 20, 1434-48.

Legendy C. R., Salcman M. (1985) Bursts and recurrences of bursts in spike trains of
spontaneously active striate cortex neurons. J. Neurophysiol. 53, 926-39.

Lennie P. (2003a) Receptive fields. Curr Biol. 13, R216-9.

Lennie P. (2003b) The cost of cortical computation. Curr Biol. 13, 493-7.

Lesica N. A., Boloori A. S., Stanley G. B. (2003) Adaptive encoding in the visual pathway.
Network 14, 119-35.

Lewicki M. S., Sejnowski T. J. (1996) Bayesian unsupervised learning of higher order
structure, In: Advances in Neural Information Processing Systems, 9, MIT Press.

29



Malach R., Amir Y., Harel M., Grinvald A. (1993). Relationship between intrinsic con-
nections and functional architecture revealed by optical imaging and in vivo targeted
biocytin injections in primate striate cortex. Proc. Natl. Acad. Sci. USA, 90,
10469-10473.

Maldonado P., Babul C., Singer W., Rodriguez E., Grun S. (2004) Synchrony and oscilla-
tions in primary visual cortex of monkeys viewing natural images. Submitted.

Mata M. L., Ringach D. L. (2005) Spatial overlap of ‘on’ and ‘off’ subregions and its
relation to response modulation ratio in macque primary visual cortex. J Neurophys.,
93:919-28.

McDermott J. (2004) Psychophysics with junctions in real images. Perception, 33: 1101-
1127.

Mechler F., Ringach D. L. (2002) On the classification of simple and complex cells. Vision
Res., 42, 1017-1033.

Moran J., Desimone R. (1985) Selective attention gates visual processing in the extrastriate
cortex. Science, 229, 782-784.

Motter B. C., Poggio G. F. (1990) Dynamic stabilization of receptive fields of cortical
neurons (VI) during fixation of gaze in the macaque. Exp Brain Res., 83, 37-43.

Motter B. C. (1995) Receptive field border stabilization during visual fixation. Investiga-
tive Ophthalmology and Visual Science, 36, S691.

Mumford D. (1994) Neuronal architectures for pattern-theoretic problems. In: Large Scale
Neuronal Theories of the Brain, Koch C, Davis, JL, eds., MIT Press, pp. 125-152.

Murray S. O., Kersten D., Olshausen B. A., Schrater P., Woods D. L. (2002) Shape per-
ception reduces activity in human primary visual cortex. Proceedings of the National
Academy of Sciences, USA, 99(23): 15164-15169.

Nakayama K., He Z. J., Shimojo S. (1995) Visual surface representation: a critical link
between lower-level and higher level vision. In: In An Invitation to Cognitive Science.
S.M. Kosslyn, D.N. Osherson, Eds., M.I.T. Press, p. 1-70.

Nguyenkim J. D., DeAngelis G. C. (2003) Disparity-based coding of three-dimensional
surface orientation by macaque middle temporal neurons. J Neurosci.23(18), 7117-
28.

Nykamp D. Q., Ringach D. L. (2002). Full identification of a linear-nonlinear system via
cross-correlation analysis. Journal of Vision, 2, 1-11.

O’Connor K. N., Petkov C. I., Sutter M. L. (2004) Stimulus optimization for auditory
cortical neurons. Society for Neuroscience Abstracts, 529.14.

Olshausen B. A., Anderson C. H., Van Essen D. C. (1993). A neurobiological model
of visual attention and invariant pattern recognition based on dynamic routing of
information. Journal of Neuroscience, 13, 4700-4719.

30



Olshausen B. A., Field D. J. (1996). Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381, 607-609.

Olshausen B. A., Field D. J. (1997). Sparse coding with an overcomplete basis set: A
strategy employed by V1? Vision Research, 37, 3311-3325.

Olshausen B. A., Anderson C. H. (1995) A model of the spatial-frequency organization in
primate striate cortex. The Neurobiology of Computation: Proceedings of the Third
Annual Computation and Neural Systems Conference. J.M. Bower, Ed., Boston:
Kluwer Academic Publishers, pp. 275-280.

Olshausen B. A. (2003) Principles of image representation in visual cortex. In: The Visual
Neurosciences, L.M. Chalupa, J.S. Werner, Eds. MIT Press. pp. 1603-15.

Pack C. C., Berezovskii V. K., Born R. T. (2001) Dynamic properties of neurons in cortical
area MT in alert and anaesthetized macaque monkeys. Nature, 414, 905-908.

Pack C. C., Livingstone M. S., Duffy K. R., Born R. T. (2003) End-stopping and the
aperture problem: Two-dimensional motion signals in macaque V1. Neuron, 39,
671-680.

Paninski L., Pillow J. W., Simoncelli E. P. (2004) Maximum likelihood estimation of a
stochastic integrate-and-fire neural encoding model. Neural Comput 16, 2533-61.

Parent P., Zucker S. (1989) Trace inference, curvature consistency and curve detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 823-839.

Parker A. J., Hawken M. J. (1988) Two-dimensional spatial structure of receptive fields in
monkey striate cortex. Journal of the Optical Society of America A, 5: 598-605.

Peters A., Payne B. R. (1993) Numerical relationships between geniculocortical afferents
and pyramidal cell modules in cat primary visual cortex. Cereb Cortex. 3, 69-78.

Peters A., Payne B. R., Budd J. (1994) A numerical analysis of the geniculocortical input
to striate cortex in the monkey. Cereb Cortex. 4, 215-29.

Polat U., Mizobe K., Pettet M. W., Kasamatsu T., and Norcia A. M. (1998) Collinear
stimuli regulate visual responses depending on cell’s contrast threshold. Nature 391,
580-584.

Polsky A., Mel B. W., Schiller J. (2004) Computational subunits in thin dendrites of
pyramidal cells. Nat Neurosci. 7, 621-7.

Rao R.P., Ballard D.H. Predictive coding in the visual cortex: a functional interpretation
of some extra-classical receptive-field effects. Nat Neurosci. 2, 79-87.

Rieke F., Warland D., de Ruyter van Stevenick R., Bialek W. (1997) Spikes: Exploring
the Neural Code. MIT Press.

Ringach D., Hawken M., Shapley R. (2002) Receptive field structure of neurons in monkey
primary visual cortex revealed by stimulation with natural image sequences. Journal
of Vision, 2, 12-24.

31



Rockland K. S., Lund J. S. (1983) Intrinsic laminar lattice connections in primate visual
cortex. Journal of Comparative Neurology 216, 303-18.

Rose G., Diamond D., Lynch G. S. (1983) Dentate granule cells in the rat hippocampal
formation have the behavioral characteristics of theta neurons. Brain Res. 266, 29-37.

Rust N. C., Schwartz O., Movshon J. A., Simoncelli E. P. (2004) Spike-triggered Charac-
terization of Excitatory and Suppressive Stimulus Dimensions in Monkey V1. Neu-
rocomputing, 58-60C, 793-799.

Ruthazer E. S., Stryker M. P. (1996). The role of activity in the development of long-
range horizontal connections in area 17 of the ferret. Journal of Neuroscience 16,
7253-7269.

Sadato N., Pascual-Leone A., Grafman J., Ibanez V., Deiber M. P., Dold G., Hallett M.
(1996). Activation of the primary visual cortex by Braille reading in blind subjects.
Nature, 380, 526-8.

Schwartz O., Simoncelli E. P. (2001) Natural signal statistics and sensory gain control.
Nat Neurosci, 4, 819-25.

Series P., Lorenceau J., Fregnac Y. (2003) The ”silent” surround of V1 receptive fields:
theory and experiments. J Physiol Paris., 97, 453-74.

Sha’ashua A., Ullman S. (1988) Structural saliency: The Detection of Globally Salient
Structures Using a Locally Connected Network. International Conference on Com-
puter Vision (ICCV), December 5-8, Tampa, Florida, pp. 321-327.

Shapley R. (2004) A new view of the primary visual cortex. Neural Networks, 17, 615-623.

Sharpee T., Rust N. C., Bialek W. (2004) Analyzing neural responses to natural signals:
Maximally informative dimensions. Neural Computation, 16, 223-250.

Sillito A. M., Grieve K. L., Jones H. E., Cudeiro J., Davis J. (1995) Visual cortical mech-
anisms detecting focal orientation discontinuities. Nature, 378, 492-496.

Simoncelli E. P., Olshausen B. A. (2001) Natural image statistics and neural representa-
tion. Annu Rev Neurosci., 24, 1193-216.

Sincich L. C., Blasdel G. G. (2001) Oriented axon projections in primary visual cortex of
the monkey. Journal of Neuroscience 21, 4416-4426.

Skottun B. C., De Valois R. L., Grosof D. H., Movshon J. A., Albrecht D. G., Bonds A.
B. (1991) Classifying simple and complex cells on the basis of response modulation.
Vision Res., 31, 1079-86.

Smyth D., Willmore B., Baker G. E., Thompson I. D., Tolhurst D. J. (2003) The receptive-
field organization of simple cells in primary visual cortex of ferrets under natural scene
stimulation. J Neurosci. 23, 4746-59.

Softky W. R., Koch C. (1993) The highly irregular firing of cortical cells is inconsistent
with temporal integration of random EPSPs. J Neurosci. 13(1):334-50.

32



Tarr M. J. (1999) News on views: pandemonium revisited. Nat Neurosci., 2, 932-5.

Tenenbaum J. B., Freeman W. T. (2000) Separating style and content with bilinear models.
Neural Computation 12, 1247-1283.

Thompson L. T., Best P. J. (1989) Place cells and silent cells in the hippocampus of
freely-behaving rats. J. Neurosci., 9, 2382-2390.

Tinbergen N. (1972) The animal in its world: explorations of an ethologist. Harvard
University Press.

Tolhurst D. J., Movshon J. A., Dean A. F. (1983) The statistical reliability of signals in
single neurons in cat and monkey visual cortex. Vision Res., 23, 775-785.

Touryan J., Lau B., Dan Y. (2002) Isolation of relevant visual features from random stimuli
for cortical complex cells. J Neurosci 22, 10811-10818.

Ullman S. (1995) Sequence seeking and counter streams: a computational model for bidi-
rectional information flow in the visual cortex. Cereb Cortex., 5, 1-11.

van Hateren J. H., van der Schaaf A. (1998) Independent component filters of natural
images compared with simple cells in primary visual cortex. Proc.R.Soc.Lond. B,
265: 359-366.

Vinje W. E., Gallant J. L. (2000) Sparse coding and decorrelation in primary visual cortex
during natural vision. Science, 287, 1273-76.

Vinje W. E., Gallant J. L. (2002) Natural stimulation of the nonclassical receptive field
increases information transmission efficiency in V1. J Neurosci., 22, 2904-15.

Walker G. A., Ohzawa I., and Freeman R. D. (1999) Asymmetric Suppression Outside the
Classical Receptive Field of the Visual Cortex. Journal of Neuroscience 19, 10536-
10553.

Watson A. B., Barlow H. B., Robson J. G. (1983) What does the eye see best? Nature,
302, 419-422.

Wirth S., Yanike M., Frank L. M., Smith A. C., Brown E. N., Suzuki W. A. (2003) Single
neurons in the monkey hippocampus and learning of new associations. Science, 300,
1578-81.

Worgotter F., Suder K., Zhao Y., Kerscher N., Eysel U. T., Funke K. (1998) State-
dependent receptive-field restructuring in the visual cortex. Nature, 396, 165-168.

Yoshioka T., Blasdel G. G., Levitt J. B., and Lund J. S. (1996) Relation between patterns
of intrinsic lateral connectivity, ocular dominance, and cytochrome oxidase-reactive
regions in macaque monkey striate cortex. Cerebral Cortex 6, 297-310.

Young M. P. (2000) The architecture of visual cortex and inferential processes in vision.
Spatial Vision, 13, 137-46.

Zetzsche C., Krieger G., Wegmann B. (1999) The Atoms of Vision: Cartesian or Polar?
J. Opt. Soc. Am. A, 16, 1554-1565.

33



Zetzsche C., Rohrbein F. (2001) Nonlinear and extra-classical receptive field properties
and the statistics of natural scenes.Network, 12, 331-50.

Zhou H., Friedman H. S., and von der Heydt R. (2000). Coding of border ownership in
monkey visual cortex. Journal of Neuroscience, 20, 6594-6611.

Zipser K., Lamme V. A., Schiller P. H. (1996) Contextual modulation in primary visual
cortex. J Neurosci., 16, 7376-89.

34


