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A number  of researchers have suggested that in order  to understand the response properties of cells 
in the visual pathway, we must consider the statistical structure of the natural  environment. In this 
paper, we focus on one aspect of that structure, namely, the correlational structure which is 
described by the amplitude or power spectra of natural  scenes. We propose that the principle 
insight one gains from considering the image spectra is in understanding the relative sensitivity of 
cells tuned to different spatial frequencies. This study employs a model in which the peak sensitivity 
is constant as a function of frequency with linear bandwith increasing (i.e., approximately constant 
in octaves). In such a model, the "response magnitude" (i.e., vector length) of cells increases as a 
function of their optimal (or central) spatial frequency out to about 20 cyc/deg. The result is a code 
in which the response to natural  scenes, whose amplitude spectra typically fall as 1/f, is roughly 
constant out to 20 cyc/deg. An important  consideration in evaluating this model of sensitivity is the 
fact that natural  scenes show considerable variability in their amplitude spectra, with individual 
scenes showing falloffs which are often steeper or shallower than 1/f. Using a new measure of image 
structure (the "rectified contrast spectrum" or "RCS")  on a set of calibrated natural  images, it is 
shown that a large par t  of the variability in the spectra is due to differences in the sparseness of local 
s tructure at different scales. That  is, an image which is "in focus" will have structure (e.g., edges) 
which has roughly the same magnitude across scale. That  is, the loss of high frequency energy in 
some images is due to the reduction of the number  of regions that contain structure ra ther  than the 
amplitude of that structure. An "in focus" image will have structure (e.g., edges) across scale that 
have roughly equal magnitude but  may vary in the area covered by structure. The slope of the RCS 
was found to provide a reasonable prediction of physical blur across a variety of scenes in spite of 
the variability in their amplitude spectra. It  was also found to produce a good prediction of 
perceived blur as judged by human subjects. © 1997 Elsevier Science Ltd 
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INTRODUCTION 

The psychophysical and neurophysiological methods of 
this last century have provided us with many important 
insights into the behavior and function of single cells in 
the visual pathway. However, over the last few years, a 
number of researchers have taken the position that a 
complete understanding of visual information processing 
also requires a better understanding of the nature of the 
information available in our natural environment (e.g, 
Barlow, 1961; Srinivasan, Laughlin, & Dubs, 1982; 
Field, 1987, 1993, 1994; Atick, 1992; Atick & Redlich, 
1992; Ruderman, 1994). This approach considers the 

*Department of Psychology, Cornell University, Ithaca, NY 14853, 
U.S.A. 

tDepartment of Psychology, Manchester University, Manchester, U.K. 
~:To whom all correspondence should be addressed [Fax: +1 607 255 

8433; Email djf3@cornell.edu]. 

statistical structure of the environment (e.g., natural 
scenes) in relation to the known properties of sensory 
coding. The principle assumption of this approach is that 
the visual system has evolved and/or developed to 
produce an efficient representation of  its natural environ- 
ment. Considering the great number of studies that have 
explored the information processing capabilities of the 
mammalian visual system, it is surprising that only a few 
have taken a close look at the sorts of information and 
redundancy that is available around us. This may be due 
partly to the bias that many researchers have in assuming 
that our environment is relatively random and does not 
produce statistics that are consistent across scenes. The 
work of the last several years has shown that this is far 
from the case. 

In characterizing the structure of natural scenes, a 
majority of researchers have concentrated on the redun- 
dancy described by the pairwise correlation between 
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luminance values at different points in an image. One 
such measure of spatial correlation is the autocorrelation 
function (acf), which describes pairwise correlations as a 
function of the distance between pixels. If the image 
statistics are "stationary" (i.e., the correlation as a func- 
tion of distance is the same at all image locations for the 
population of images) then the acf provides a complete 
description of all pairwise correlations, as does the image 
power spectrum, which is given by the Fourier transform 
of the acf (Field, 1987). A number of studies have 
demonstrated that the amplitude spectrum falls with 
frequency ( f )  by a factor of about 1/f  as would be 
expected from a scale-invariant environment (hence, the 
power spectrum falls by about f-2). However, the falloff 
across scenes shows significant variability ranging from 
approximately f-0.6 to f-1.6 with averages from different 
studies in the rangef  -°9 t o f  1.2. (Burton & Moorehead, 
1987; Field, 1987, Field, 1993; Tolhurst, Tadmor, & 
Chat, 1992; Ruderman & Bialek, 1994; van der Schaaf & 
van Hateren, 1996). However, it should be noted that 
Carlson (1978) noticed the falloff with amplitude as a 
function of frequency with his images and even Kretzmer 
(1952) noted that television signals might be efficiently 
compressed because of the predictable falloff in the 
correlations in images as a function of distance (Fig. 1). 

There have been a number of attempts to account for 
properties of visual neurons in terms of this form of 
redundancy (Srinivisan et  al., 1982; Atick & Redlich, 
1992; van Hateren, 1992; van der Schaaf & van Hateren, 
1996; Switkes et  al., 1978; Hancock, Baddeley, & Smith, 
1992). However, we argue here that the amplitude 
spectrum provides us primarily with insights into the 
overall sensitivity of visual neurons (Field, 1987). To 
account for why cells in the early visual pathway have 

their particular bandwidths and spatial profiles, it was 
proposed that one needs to consider higher-order 
statistics as represented by the phase spectra (Field, 
1987, 1993, 1994; Olshausen & Field, 1996). The 
argument presented in this work is that the particular 
parameters found in the primary visual cortex are near to 
optimal, if optimal is defined in terms of "sparseness". 
That is, these properties provide a means of representing 
any particular natural scene with a minimal number of 
active neurons (i.e., a minimal description length). 
However, the subset that is active will change from 
image to image resulting in a low probability that any 
particular cell is active. This sparse representation is 
theorized to be the most independent representation that 
is possible, given a semi-linear representation like that 
found with simple cells. Olshausen & Field (1996) have 
recently reported that a neural network designed to 
increase statistical independence by finding the most 
sparse representation produces "receptive fields" like 
those found in primary visual cortex. These receptive 
fields form even when the spectrum is "whitened" to 
remove all correlations. The amplitude spectra of the 
images is largely irrelevant to whether such a sparse 
representation is possible. In Fourier terms, it is the phase 
spectra that is relevant to the question of sparseness 
(Field, 1987, 1994) and therefore it follows that the 
amplitude spectra of natural scenes provides little insight 
into understanding why visual neurons have their 
particular bandwidths and spatial profiles. 

If this is the case, then does one gain any insight into 
visual coding by understanding the statistical regularity 
revealed by the amplitude spectra of natural scenes? In 
the following sections, we propose that the amplitude 
spectra provide insights into the absolute senstivity of 

(A) (B) Amplitude Spectrum 
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FIGURE 1. An image and its amplitude spectrum. The spectrum peaks at the low frequencies and falls with increasing 
frequency at all orientations. This falloff has been found to be consistent across a wide range of natural scenes, typically falling 

with frequency 0 c) by a factor of approx, j~l  with falloffs ranging from approximately j~0 ,  t o . F  16. 
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visual neurons as a function of spatial frequency. In the 
following sections we: 

1. Describe a model of the sensitivity of visual neurons 
that allows us to apply that sensitivity to the 
amplitude spectra of scenes. 

2. Consider the sources of variability in the slopes of 
natural scenes: demonstrating that both the relative 
contrast and the relative sparseness at different 
frequencies (i.e., different scales) contribute to the 
slope. 

3. Describe a theory of blur in images which proposes 
that blur is related to the relative contrast as a 
function of frequency--not the relative sparseness. 

4. Demonstrate that a model which separates relative 
sparseness and relative contrast can identify blur in 
natural scenes despite considerable variability in the 
falloff of their amplitude spectra. 

The first section describes a model of sensitivity along 
the lines of that proposed by Field (1987), Kingdom & 
Mouldon (1992) and Brady & Field (1995) and Brady et  
al. (1997). We use this general model to describe the 
relative contrast of structure as a function of frequency. 
This will provide a "language" for discussing the sources 
of variability in the slopes of natural scenes and also 
provide the basis of the model to predict blur in images. 
The final section will compare this model to judgments of 
perceived blur by human subjects. 

In the last study of this paper, we look at the ability of 
subjects to "identify" blur (as opposed to "discriminate" 
blur). Subjects appear to be capable of identifying 
whether a novel complex image appears blurred even 
without a reference image and even though there is 
insufficient information in the amplitude spectrum to 
perform this task. Tadmor & Tolhurst (1994), for 
example, found that when subject's were asked to adjust 
the slopes of natural scenes to their "best quality", they 
were accurate at selecting the slope of the original image. 
Three recent studies have explored human observer's 
sensitivity to changes in the amplitude spectra of images 
in relation to visual coding (Knill, Field, & Kersten, 
1990; Tadmor & Tolhurst, 1994; Tolhurst, Tadmor, & 
Arthurs, 1996). Such studies provide insights into how 
the visual system discriminates complex images and may 
be related to blur discrimination (Hammerly & Dvorak, 
1981; Watt & Morgan, 1983; Walsh & Charman, 1988; 
Hess, Pointer, & Watt, 1989; Peli et  al., 1981). However, 
it should be noted that when discriminating images with 
shallow slopes, the term "blur discrimination" may be 
inappropriate, since neither of the two images in the 
discrimination task may appear blurred. Furthermore, as 
Tadmor & Tolhurst (1994) point out, there is consider- 
able variability in slope discrimination from image to 
image, suggesting the phase structure of the image plays 
a significant role. 

However, before we consider blur and the sources of 
variability in the amplitude spectra of images, we 
describe an approach to visual sensitivity that can be 
directly applied to the natural scenes. 

AMPLITUDE SPECTRA AND VISUAL SENSITIVITY 

As noted above, researchers have found that the ampli- 
tude spectrum shows variability across scenes. However, 
the average falloff of any particular collection of images 
appears to average approximately 1/f lA . An image with a 
1/ f  amplitude spectrum has equal contrast energy in each 
octave (each octave has the same variance). As pre- 
viously noted, an image with a f -1  spectrum will produce 
equal average responses across an array of mechanisms 
that have equal peak spatial frequency sensitivity but 
increasing linear bandwidth (Field, 1987). A model of 
this type is shown in Fig. 2. This model of the visual 
system has recently been shown to be capable of 
accounting for the contrast matching behavior in human 
observers (Brady & Field, 1995). Furthermore, recent 
neurophysiology by Croner & Kaplan (1995), has shown 
that ganglion cell receptive fields in macaque have a peak 
sensitivity which is inversely proportional to the square 
of the area covered by the receptive field, as expected 
from this model. 
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FIGURE 2. (a) Proposed model of  sensitivity. In frequency, the peak 
sensitivity is constant as a function of frequency. In space, the peak 
sensitivity increases with the inverse square of  the width (i.e., increases 
with the square of  the frequency). (b) If sensitivity of the model in (a) is 
defined in terms of  vector length (V)  then the sensitivity increases in 
proportion to frequency out to the peak of  the highest frequency 
channel (e.g., approximately 20 cyc/deg, according to Brady & Field, 
1995). The advantage of this description is that it can be applied 
directly to broadband stimuli like natural scenes [e.g., equation (2)] to 
determine the average response magnitude as a function of frequency. 
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How should we define sensitivity in a model like that 
shown in Fig. 2? As one can see, the peak sensitivity of 
the mechanisms is constant across scale (i.e., across the 
different spatial frequency bands) when measured in the 
frequency domain. However, in the spatial domain, peak 
sensitivity increases with the square of frequency. Thus 
"peak sensitivity" provides a measure of relative sensi- 
tivity that depends on the units of measurement. We 
believe the best way to describe sensitivity is to treat each 
cell as a vector and consider relative sensitivity in terms 
of the relative vector length. The length of the vector is 
determined by its L2 norm--(i .e. ,  the Euclidean sum of 
the basis vectors). Because the length of a vector is 
preserved under an orthonormal transformation, this 
measure of sensitivity is equivalent in the space and 
frequency domains. In either domain, vector length is 
defined as: 

V : V / ( Z g ( x i ) 2 ) .  ( | )  

In the frequency domain, the vector length is, there- 
fore, equal to the square root of the volume under the 
power spectrum. For the model shown in Fig. 2(a), this 
volume (and hence the vector length) increases with the 
square of the frequency out to the highest frequency 
channel and therefore V( f )  increases with frequency. 
Based on the results of the contrast matching experi- 
ments, this highest channel is at approximately 20 cyc/ 
deg (Brady & Field, 1995) for human observers. Thus, 
the model of sensitivity illustrated in Fig. 2(a) has a 
sensitivity profile, as described by vector length, as 
shown in Fig. 2(b). 

One of the advantages of this approach to describing 
sensitivity as a function of frequency is that it allows us to 
compare the average response of cells at different 
frequencies by simply multiplying the vector length 
function by the amplitude spectrum of the image 

R ( f )  = V( f )  • Amp(f) .  (2) 

It also follows that the magnitude of the response to 
white noise is proportional to this vector length. This 
model therefore predicts that with white noise input, the 
visual system produces the largest response at the highest 
frequencies (around 20 cyc/deg). However, with a 1/f 
image, this model will produce a response which will be 
flat out to 20cyc/deg,  as shown in Fig. 3. Such a 
description also seems to match our perceptual observa- 
tions. The white noise image, as shown below, appears to 
be dominated by high frequency structure. The image 
with the 1/f spectrum, on the other hand, appears to have 
structure at a variety of scales. 

Does this model of sensitivity conflict with the model 
of threshold sensitivity revealed by the contrast sensitiv- 
ity function which peaks at 2-4 cyc/deg? As Field & 
Brady (1997) point out, the two are not incompatible. 
Consider what this model predicts about detecting a 
sinusoid in broadband noise. The response to the sinusoid 
is relatively constant across frequency, as described by 
the peaks of the spectral sensitivity curves. But since the 
bandwidth is increasing with frequency, the response to 

broadband noise increases with frequency. Therefore, the 
signal to noise ratio will be decreasing with frequency. 
The signal to noise ratio for sinusoids would be highest 
at the peak of the lowest frequency channel--i.e.,  around 
2--4 cyc/deg. Therefore, if we assume that noise that 
limits threshold sensitivity is relatively flat (as suggested 
by the equivalent noise measure of Pelli, 1990), then the 
threshold curve should look something like the contrast 
sensitivity function (Field & Brady, 1997). 

It should also be noted that in this particular model, the 
bandwidths increase in proportion to frequency (and are 
constant in octaves). The physiological evidence actually 
suggests that the bandwidths do not quite increase in 
proportion to frequency and therefore have smaller 
bandwidths in octaves at higher frequencies (Tolhurst 
& Thompson, 1981). For the vector length model to hold, 
this would require that peak sensitivity actually increase 
at the highest frequency. We are currently exploring this 
possibility. 

What is the advantage of coding an environment with 
vectors that have equal average response magnitude? The 
most obvious advantage is that it allows images to be 
represented by cells with the same dynamic range. That 
is, if the cells coding the different frequencies have the 
same maximum response and same threshold, then this 
method allows the typical contrasts in the image to be 
matched to the range of responses that can be produced 
by the cells. 

It should be noted that this "response equalization" 
(e.g., Field, 1987) differs from the whitening hypothesis 
proposed by Atick (1992) and Atick & Redlich (1992). 
They note that the basic shape of the contrast sensitivity 
function and the spatial frequency tuning of ganglion 
cells are well described by a model which assumes that 
the ganglion cells are decorrelating the l / f  signal and 
must also deal with the presence of broadband noise (e.g., 
photon noise). However, the point we are making is not 
about whether cells in different spatial locations are 
uncorrelated. Rather, the argument here relates to the 
relative sensitivity of cells tuned to different frequencies. 
We suggest that the cells tuned to different frequencies 
will have the same response magnitude, on average, in 
the presence of a 1If image allowing the information in 
the images to be matched to the response range of the 
cells. Increasing the overall response magnitude of the 
high frequency cells in this way will have no effect on 
the correlations between cells. 

In the following section, we use this model of sensi- 
tivity to develop an understanding of the effective con- 
trast of natural scenes. In particular, this model suggests 
that for a I /f  image, the average response will be approxi- 
mately constant as a function of frequency. Similarly, the 
response to edges (which have 1/f spectra) will be 
approximately constant as a function of frequency. 

SOURCES OF VARIABILITY 

As mentioned, the amplitude spectra of natural scenes 
shows significant variability ranging from approximately 
f 0.6 to f - l s  with averages from different studies in the 
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FIGURE 3. The figure shows the response of the model in Fig. 2 to two types of scenes. The figure on the left shows the average 
response magnitude as a function of frequency to images with fiat spectra such as noise. The figure on the right shows the 
average response magnitude to images with l / f  spectra, such as the image shown below on the right. The reader will probably 
agree that the noise image on the left appears dominated by high frequency structure while the image on the right has visible 

structure at a variety of scales. 

range f-0.9 to f-1.2. Should visual sensitivity be adapted 
to take into account the fact that the falloff is often 
steeper than f - l ?  Or suppose that a particular image has a 
falloff o f f  -]'5. Would that mean that the visual system's 
sensitivity is poorly matched to this image? The answer 
depends on the underlying cause of the steeper spectrum. 
In this section, we will look at the structure that results in 
a 1/f spectrum and propose two sources that underlie the 
variability in the spectra. We will then return to the issue 
of visual sensitivity to see how it applies to the two 
sources of variability (Fig. 4). 

Previously, it was proposed (Field, 1993, 1994) that a 

first approximation of scenes by considering the image to 
be a sum of bandpass functions (e.g., wavelet basis 
functions), where in correspondence with the wavelet, we 
sum according to: 

o~ /3o-2 m 

Image(x,y) = Z Z g[°mx-xnm'crmy-ynm] (3) 
m = O n = l  

where "m" corresponds to the scale, "ct" is the number of 
scales in the image, "~" controls the density of the vectors 
at each scale, "tr" controls the spectral distance between 
scales (and also determines the relative size at each 
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scale), g(x,y) represent a localized function (e.g., a Gabor 
function) and Xnm and Ynm signify that each element is 
randomly positioned within the image. 

With this procedure, the image is represented as a sum 
of functions where the number of functions increases 
with the square of the scale (i.e., the spatial frequency), 
the size becomes smaller with scale and the average 
amplitude remains constant. Such images have the 
property of being scale invariant such that one can zoom 
anywhere in the image and maintain the same statistical 
structure. Examples of two such images created in this 
manner are shown in Fig. 4. As previously noted (Field, 
1994), this sum of functions will produce an image which 
has a 1/f amplitude spectrum which has constant energy 
in each octave. It will also be equally sparse at all 
frequencies since the number of elements is inversely 
related to the area they cover. For the following 
discussion, it is important to recognize that the energy 
in any given frequency band is dependent on both the 
amplitude of the elements and the number of elements. 
Reducing either will reduce the energy in the band. It 
should be noted that Ruderman (1996, 1997) takes a 
similar approach proposing that the appropriate sum of 
occluding surface elements will also produce I/f behavior 
and suggests that this provides a more appropriate 
account of the source of self-similarity in natural scenes. 

Of course, a real image will have many forms of 
redundancy not found in such synthetic images. None- 
theless, this simple model can help us to understand two 
ways in which an image might have variability in the 
spectrum. Although images do not consist of sums of 
independently placed elements, we can think of images in 
terms of the number of edges at different scales and the 
amplitudes of the edges at different scales. Each of these 
factors contributes to the slope of the amplitude spectrum 
(Fig. 5). 

Source 1: blur---amplitude reduction at high frequencies 

For images with 1/f amplitude spectra created in the 
manner shown above, the elements at each scale have the 
same contrast. Changing the contrast as a function of 
scale will change the slope of the amplitude spectrum. 
Thus, the first reason that the spectrum might be steeper 
than f-1 in many scenes is that the amplitude of the 
elements decrease with increasing frequency. This would 
be the expected result for an image that is out of focus. 
An increase in the slope of the amplitude spectrum would 
be expected to occur to some degree for any set of images 
from a three-dimensional world using a finite aperture, 
since the aperture limits the depth of field. With a range 
of depths, at least some part of the image would be out of 
focus. Furthermore, if there was any motion in the image 
over the period the shutter was open (e.g., wind in the 
trees) this will also result in blur. Consider the response 
of a model like that described in the previous section (Fig. 
2). For an image with a 1/f amplitude spectrum, the 
average response across the different frequency bands 
will be flat. With a blurred image (i.e., the amplitude 
spectrum steeper than 1/f), the amplitude of the responses 

will be lower at higher frequencies. If we consider the 
amplitudes of edges, for example, as seen through these 
filters, we will find that the amplitudes of these edges fall 
with frequency (Fig. 6). 

Source 2: variable density in structure at different 
frequencies 

In the second case, rather than altering the amplitude of 
the high frequency elements, one can also alter the slope 
of the spectrum by changing the relative density of the 
elements at different frequencies. If the number of 
elements increases by a factor of less than f2 then the 
spectrum will also have a slope steeper than f-1 (Field, 
1994). Figure 7 shows examples of five images that have 
spectra significantly steeper than f-1 but are not out of 
focus. 

For an image to be scale invariant at all locations, the 
amplitude spectrum must fall a s f  -1 (i.e., one can zoom 
into any region and find similar statistical structure).The 
images shown in Fig. 7, therefore, have spectra that show 
that they are not scale invariant. For these images, it is 
proposed that the number of zero crossings does not scale 
appropriately. Indeed, the images shown in Fig. 7(a, b 
and c) have nearly the same low frequency structure. 
However, the the image in Fig. 7(a) has a larger area 
covered by high frequency structure (i.e., there are 
relatively more zero-crossings at the high frequencies). 
The result is that the image in Fig. 6(a) has a shallower 
slope. In a scale-invariant image, we would expect the 
number of zero-crossings to increase with frequency such 
that any sector could be enlarged to discover the same 
number of zero crossings per unit area. 

If the slope is steep because there are fewer regions of 
the image that have high frequency structure, then with 
the model described earlier, the high frequency neurons 
will have less average activity. One must note, however, 
that there is less activity because fewer respond, not 
because they respond at a low level. Indeed, those 
responding at the edges will presumably be responding at 
the same level as those selective to low frequencies. In 
the following section, we propose a technique for 
determining the relative contribution of these two factors 
in accounting for the variability in the spectra of natural 
scenes (amplitude vs the density of structure at different 
frequencies). 

THE RECTIFIED CONTRAST SPECTRUM MODEL 
(RCS) 

The principal idea behind this approach is to measure 
the magnitude of the structure (e.g., edge contrast) that 
exists at different scales independent of the density of that 
structure. To achieve this, we measure the contrast of all 
structures that exceed a predetermined level. If a 
particular image has only a small region covered by 
structure, then this measure will evaluate only the 
magnitude of the structure in that region without the 
large region of the image not covered by structure 
reducing the estimate of the contrast. 

Figure 8 shows the basic notion behind the threshold- 
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ing. I f  the area covered by an edge is larger, but has the 
same amplitude on average, then the variance will be 
relatively high at the high frequencies. However,  if  we 
look at only the region of  the image covered by the edge, 
then we will find the same average variance. By consi- 
dering only the regions that exceed the threshold, we can 
find the average amplitude of the areas that contain 
structure. 

Images 

The images in this particular study were photographed 
with a conventional 35 m m  camera using Ilford XP1 film 
along the lines discussed previously (Field, 1994). 
Twenty natural scenes were used in this study. Each 
was calibrated for the optics and the luminance non- 
linearities of  the photographic and scanning process. This 
was done by photographing calibrated sources over a 
wide intensity range and inverting the non-linearities 
introduced by a film and scanning process. The 
compressive non-linearity of  the film was advantageous 
in that many images had an intensity range greater than 
1000:1. Although an effort was made to use the smallest 
aperature of  the camera (i.e., the largest depth of field), 
any image with a finite aperature will probably have some 
variation in focus across the different depth planes. Also, 
an effort was made to avoid images that had appreciable 
movement  during the course of  the exposure, since this 
would also introduce spatial blur. This particular set 
included a number of  images from around New York, 
Canada and Alaska and included blank regions like sky 
and water but did not contain man-made structures. We 
limited our set to these 20 natural scenes to allow 
ourselves to compare the results with the measurements 
of blur discussed in the final section of  this paper. Indeed, 
the goal here was not to provide a measure of  the 
"typical" falloffs in the spectra of  natural scenes; rather, 
the goal was to find a set of  scenes with a variety of 
amplitude spectra to determine whether the current model 
could predict the blur in these images despite their 
variation. Each of  these images was 512 × 512 pixels, and 
was scanned to a depth of 12 bits using a Nikon 
LS3510AF scanner and then windowed with a circular 
aperature with a sinusoidal edge 24 pixels wide. 

Method 

The outline of  the method is as follows. 

1. Calculate the slope of the amplitude spectra of  the 
images in the standard way (Measurement 1). 

2. Filter the image into 1.5 octave wide bands centered 
1.0 octaves apart. 

3. Calculate the variance/octave for each of the filtered 
images and calculate the slope of the RMS contrast 
(i.e., 0- of  the filtered image) as a function of fre- 
quency (Measurement 2). 

4. Threshold each of the filtered images at 0-/2, where 0- 
is defined over the five channels (0- = one standard 
deviation in the distribution of responses defined 
across the five octaves of  the image). 

5. Measure the average magnitude of all responses 
exceeding the threshold for each of the five fre- 
quency bands and calculate the slope of the RMS 
contrast as a function of  frequency (Measurement 
3). 

A depiction of this method is shown in Fig. 9. The first 
step is to calculate the falloff in the amplitude spectrum 
of the calibrated images in the usual manner (e.g., Field, 
1987). Using the model shown in Fig. 2, the second step 
is to filter the image into the 1.5 octave frequency bands. 
To reduce edge effects, we limit the analysis to the range 
of 8 cycles/picture to 128 cycles/picture and to the region 
within a 64 pixel border. As discussed earlier, this 
filtering results in a set of  bandpass, filtered images that 
have approximately the same RMS contrast for an image 
with a 1/f falloff. We can plot the RMS contrast per 
frequency band as a function of the octave-band and plot 
the slope of the spectrum at this stage. As noted earlier, 
this process adds, on average, a value of approximately 
1.0 to the amplitude spectrum since it is a measurement 
of  the contrast/octave (i.e., roughly whitens the spectrum 
as noted earlier). The fourth step is to threshold these 
filtered images. For an image that has scale-invariant 
statistics, the threshold has roughly the same effect on the 
different scales. We impose the same threshold across 
each of the filtered images corresponding to half the 
standard deviation of the average contrast (0-/2) defined 
over the set of  filtered images (e.g., Fig. 6). The third step 
is to calculate the average contrast of  the structure that 
exceeded threshold. I f  the contrast in these images was 
gaussian distributed in each of the different frequency 
bands, this process will have little change in the slope 
after thresholding. On the other hand, if the edges at high 
frequencies had the same contrast, but were relatively 
sparse (causing a steeper spectrum), then this method will 
flatten the spectrum. 

Results 

Figure 10 shows the results after making the three 
measurements discussed above. Figure 10(a) shows the 
distributions of  the falloffs in the spectra of  the 20 
images. In line with previous studies, there is a distribu- 

FIGURE 5----opposite 
FIGURE 5. This figure demonstrates two reasons an image may have an amplitude spectrum steeper than 1/f. (a) A fractal edge with a 2D 
amplitude spectrum that falls by roughly 1/f The contrast of the edge at each scale, as seen by the model in Fig. 2, will remain constant, as well as 
the total energy in each band. In (b), the image is blurred reducing the contrast of the edge at higher frequencies and reducing the total contrast 
energy at the high frequencies. In (c), the edge is less "jagged". This also reduces the total energy in the higher frequency bands since there are 
fewer regions covered by the edge. However, the edge maintains a constant contrast through the different frequency bands. Although there is less 

total power at the high frequencies with the smooth edge, the edge is not blurred. 
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(a) Values not used in calculating 
the 'rectified' contrast 
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F IGURE 8 Legend opposite. 
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I m ~  Rlter into five 
1.5 octave bands 

i "" 
FFT Threshold 

each band 

1 1 l Calculate slope: ] 
Measurement 1 Calculate ~ In each band and 

plot a as a function of frequency 

1 1 
Calculate slope: / Calculate slope: 
Measurement 2 l Measurement 3 

FIGURE 9. This figure portrays the method of making the three slope 
measurements described in the outline and shown in Fig. 10. See text 

for details. 

tion of slopes with a mean of -1.10 and a standard 
deviation of 0.14. Figure 10(b) shows the slopes of the 
contrast spectra which has a mean of -0.04 and a 
standard deviation of 0.17. As expected, the distribution 
is roughly the same but the mean has increased by 1.0. 

Figure 10(c) shows the results after thresholding. The 
variability in the spectra has been significantly reduced. 
The standard deviation of slopes has been significantly 
reduced from 0.17 to 0.07 (n=20; P<0.01) .  This 
suggests that a significant portion in the variability of the 
spectra in these images is due to the variability in the 
density of the structure, and not to blur. What is left may 
be due to the amount of blur or motion in the image. 
However, it is difficult to tell from this analysis alone. As 
noted earlier, any image of a three-dimensional environ- 
ment made with a camera that has a finite degree of blur 
will probably have some reduction in energy at high 
frequencies. However, one might argue that some of the 
drop in variability in slopes is due only to the act of 
thresholding. To address this point, a study was 
completed which determined whether this measure was 
capable of predicting blur in these images in which blur 
was artificially introduced by altering the slope of the 
spectrum. The study determines whether both human 
subjects and the the RCS measure can discriminate 
changes in the spectrum as due to blur, from changes due 
to the density of structure at different frequencies. 

6 

=l=q 
¢,~ 

:1,:2 

Distributions of slopes for natural scenes 
12 ~ 

(a) (b) 

Ampl i tude  spectra 

D -h 
I I I I I 

- 1 . 6  - 1 . 4  - 1 . 2  - 1 . 0  - 0 . 8  - 0 . 6  

8 -  

~ 6  

=1:1:2- 

0 - 

Contrast  spectra 

m 

I ' I 

- 0 1 4  0 . 0  0 . 4  

(c) 1 0-  

qJ 8 

Slope of spectrum(f n) 

Rec t i f i ed  
Cont ras t  Spectra  

RCS 

r 
I I 

-0.4 0.0 0 .4  

FIGURE 10. Distribution of slopes of (a) the original 20 images; (b) contrast spectra; and (c) the rectified contrast spectra 
(RCS). The standard deviations of the population of slopes are 0.14, 0.17, and 0.07, respectively. The RCS measure shows less 
variability than the spectra of the original images. This suggests that a significant proportion of the variability found in the 

spectra is due to the relative sparseness as a function of frequency. See text for details. 

FIGURE 8. This figure portrays how the rectified contrast spectrum was calculated for a particular frequency band. The image shows the result of 
thresholding a particular frequency band from two different images [Fig. 7(a) and Fig. 7(c)]. The figure at the top provides a characterization of 
the histograms of the two filtered images shown on the left. The contrast energy as measured by the total variance of the two images on the left 
would show that Image C had higher variance than Image B, even though the contrast magnitude of the edge was the same. These images are 
thresholded to find the values in the filtered image that exceed a particular value. The two images on the right show what parts of the image are left 
after thresholding. The variance per unit area of only the region that exceeds this threshold is then calculated, which provides a measure of the 
"rectified contrast" at this particular scale. This measure is calculated at different scales (i.e., different spatial frequencies), and the slope of this 
"spectrum" is defined as the RCS. In the example shown, the edge of image C covers a greater area than the edge in B. Nonetheless, this 
thresholded measure will determine that the magnitude of the edge was the same for the two images. By this means, the RCS provides a measure 

of the average amplitude of the edge, independent of the area covered by the edge. 
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EXPERIMENT: PREDICTING BLUR 

In this section we investigate whether the RCS can be 
used to predict perceived blur in images. As noted earlier, 
the issue of how the visual system detects blur has been 
the subject of a number of studies (e.g., Walsh & 
Charman, 1988; Hess et al., 1989; Tolhurst & Tadmor, 
1997). However, these studies concentrate on how the 
visual system discriminates different degrees of blur. 
Here, we ask the question as to how the visual system 
identifies absolute blur. That is, given a complex image 
such as a natural scene, it is clearly possible at some level 
to identify the image as out of focus without a reference 
image. There may be various cues to indicate blur under 
conditions of actual optical blur (e.g., chromatic aberra- 
tions, contrast as a function of accomodation). However, 
here we concentrate on the spatial information available 
to an observer in a static image. In this study, we 
investigate whether the RCS measure is sufficient to 
predict observers' judgments of  blur when the blur is 
computer generated. As shown above, the slope of the 
spectra of the natural scenes is quite variable, even when 
efforts are made to have the image in focus and, 
therefore, the amplitude spectrum alone should not be a 
good prediction of blur across scenes. 

In this study, we introduce blur by altering the slope of 
the amplitude spectra of the images and attempt to deter- 
mine whether the RCS analysis is capable of predicting 
blur in a scene, despite the variation in the slopes of the 
amplitude spectra between images. If the RCS is a good 
measure of the amplitude of structure as a function of 
frequency, then the RCS should be capable of predicting 
blur in spite of the variability in the amplitude spectra of 
these images. 

Method  

Stimuli. The 20 natural scenes described above were 
adjusted in their luminance range to fit within the limits 
of the computer screen. The images were windowed as 
described above to limit distortions at the edges. In 
addition to the natural scenes, three images consisting of 
a disc, the letter T (shown above), and a "plus sign" were 
analyzed. These three were selected because they had 
relatively steep spectra. An image of white noise was also 
added, creating a set of 24 images. Each of these 24 
images was filtered to have amplitude spectra with slopes 
that varied between - 2 . 0  and -0 .1  in steps of 0.05. This 
was achieved by multiplying each of the original spectra 
by a factor o f f  -n, where n was equal to the sum of the 
slope of the original image and the desired slope factor. 
The total variance (RMS contrast) of each image 
sequence was set to a constant which maximized the 
image contrast for the screen. This created 24 sequences 
of 20 filtered images along the lines of the sequence 
shown in Fig. 6. Images were presented at a distance of 
0.5 m and subtended an angle of 17 deg. The mean 
luminance of the screen was 6.5 cd/m 2. 

Procedure.  For the estimates of blur by the model, the 
RCS was calculated for each of the images in the 
sequence described above. An image was judged to be 

blurred when the RCS had a slope steeper than -0 .1 .  To 
estimate blur by human subjects, 12 subjects were asked 
to select the point in the image sequence at which the 
images appeared blurred. For each image sequence, the 
subjects began at a random point in the sequence and by 
means of the mouse button, could move up or down 
through the sequence until they had reached the point at 
which they were confident that the image "just began to 
appear blurred". Each subject thus provided a single data 
point for a given image sequence. As described above, 
the natural scenes were given a sinusoidal edge of 24 
pixels to reduce the edge effects. All calculations and the 
judgments of blur were performed on this windowed 
image. Twelve subjects with normal or corrected to 
normal vision participated. It should be noted that 
although the subjects had little difficulty with this task, 
this method is not equivalent to optical blur. Since the 
total power remains constant for all the images in a set, an 
increase in the contrast at high frequencies is accom- 
panied by a reduction in the contrast at low frequencies. 
However, as the results will show, the total power in any 
given band is not a sufficient cue to judge blur. 

Results 

Figure l l (A)  shows the slope at which the images 
appeared plotted against the slope of the image before 
filtering. The error bars represent the standard errors for 
the 12 subjects. As one can see, the original "in focus" 
images have considerable variation in their slope. None- 
theless, with the exception of the "noise image", the 
subjects fairly reliably described the image as blurred 
when the slope was slightly steeper than the slope of the 
original image. This is in line with the results of Tadmor 
& Tolhurst (1994). For example, the original slope of the 
"letter T" stimulus was -1 .62 ,  but was not considered 
blurred until, on average, the slope was - 1.68. It is clear 
that subjects are not simply using the slope of the 
amplitude spectrum to determine blur. With the noise 
image, however, there is no defined point of where the 
image can be described as "in focus". Although the 
variability among subjects was higher than for natural 
scenes, subjects, on average, judged the image to be 
blurred when it exceeded l / f  Introducing correlations in 
the noise does not produce the perception of blur until the 
correlations exceed the correlations found in typical 
scenes of the natural environment. 

Figure l l(B) shows the prediction of blur from the 
model plotted against the results of the 12 subjects. 
Although the model is not as accurate as the subjects in 
predicting blur, the model does make reasonable 
predictions for the different images. Again, the amplitude 
spectrum would provide a poor prediction of blur since it 
would provide the same predicted blur slope for all the 
images. For each image, the model estimated which 
images in the sequence of filtered images should be 
judged as blurred, based on the slope of the RCS. It 
should be remembered that the model does not have the 
original stimulus as a reference. It is judging blur entirely 
by the spatial structure within each image--not  by 
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FIGURE 11. (A) The slope at which subjects judged the 24 images as beginning to appear blurred is plotted against the slope of 
the original image. Results are for 12 subjects and error bars represent standard errors. The three computer-generated images 
with steep spectra are noted. These results suggest that with the exception of the noise image, the images appeared blurred when 
the slopes were slightly steeper than the original image. Clearly, the slope of the amplitude spectrum does not predict blur since 
the slope judged to be blurred varies from image to image. (B) Results comparing perceived blur for the 12 subjects with the 
calculations of blur by the RCS. Although these images had significant variability in their slopes, the measure provided a 
reasonable prediction of the psychophysical results. Notice that the model predicts that a white noise pattern will appear blurred 

when its spectrum becomes steeper than 1/f This is in agreement with the subject's responses. 

comparing it to the original. Although the slope of  the 
amplitude spectrum alone is a poor predictor of blur, the 
RCS slope appears to be able to capture at least a portion 
of the information relevant to blur (i.e., the contrast of 
structure across scale). These results therefore show that 
this RCS measure is capable of using information other 
than that shown by the amplitude spectra. The model 
appears to make a reasonable prediction of blur in these 
images. 

What is also quite interesting is the result with the 
noise pattern. This is an image without edges or other 
phase structure. Notice that for the white noise image, the 
slope of  the original image was 0.0 (i.e., fiat) but the 
model predicts that the image is not blurred until it 
becomes steeper than -1 .0 ,  in agreement with the 
subjects' estimates. 

DISCUSSION 

The results above show that the amplitude spectrum of 
natural scenes is not sufficient to predict when an image 
is in focus or when human observers will judge an image 
to be blurred. The slope of the amplitude spectrum is a 
result of both the amplitude of  the structure at different 
frequencies (e.g., contrast of edges) as well as the density 
of the structure (number of edges). Blur, however, 
appears to depend entirely on the amplitude of the struc- 
ture. This may help to explain why images under scotopic 
conditions or low contrast conditions do not appear 
blurred. It is not the absolute amplitude of the structure at 
high frequencies which determines blur. Rather, it is the 
relative amplitude of the detectable structure at different 
frequencies. Only when the contrast of the detectable 

structure (e.g., edges) at high frequencies falls below that 
of the low frequencies is blur perceived. 

It is not clear whether these result can be applied to 
those studies that have looked at a human observer's 
ability to discriminate blur. Tolhust et al. (1996) and 
Tadmor & Tolhurst (1994) have shown that discrimina- 
tion thresholds of different natural scenes varied consi- 
derably from scene to scene. It is possible that the RCS 
measure described here would provide a better account of 
this variability. However, the task of judging which 
images in sequence appear blurred may well involve a 
different set of constraints than those required to 
discriminate instances of the sequence. 

It should also be noted that the RCS method described 
above is fundamentally limited in that it is a global 
measure. A more accurate measure of blur will certainly 
involve local measures and will probably be best calcu- 
lated on an edge by edge basis (i.e., by tracking the 
amplitude of the individual edge across scale: e.g., 
Bergholm, 1987; Elder & Zucker, 1997). Since our visual 
system can certainly accommodate to a local region of 
the image, the global measure will certainly be limited in 
predicting blur. Indeed, the fact that the subjects were 
more accurate at predicting blur than the model demon- 
strates that more information than that described in the 
model must be involved. We believe that by using the 
basic model to calculate blur locally and comparing the 
local edge magnitude across scale will produce good 
results. Indeed, one of the advantages of such an 
approach is that it allows the individual edges that are 
blurred to be discriminated from edges that are low 
contrast. In comparison, a measure which calculates only 
the energy at the highest frequencies, will confound 
contrast with blur. 
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It has been suggested that the chromatic amplitude 
spectra of  natural scenes appears to be steeper than the 
achromatic spectra like that described here (Burton & 
Moorehead, 1987). This is certainly an area that deserves 
further study. However,  the results here provide two 
possible explanations. First, of  course, the chromatic 
aberrations of  the lens may limit the extent to which 
different wavelengths might be simulataneously in focus. 
However,  a second interesting possibility is that the 
chromatic amplitude spectra may be more sparse at the 
higher frequencies. For example, consider an image of a 
tree. The leaves will all have similar chromatic proper- 
ties. However,  the luminance will depend on the angle 
each leaf has, relative to the lightsource. Therefore, we 
might expect the chromatic edges to be of much lower 
amplitude within the tree than the achromatic edges. The 
high amplitude edges would be mainly found along the 
perimeter of  the tree. Thus, the chromatic spectra may be 
steeper because there will be fewer high contrast 
chromatic edges in images that have regions of  uniform 
chromaticity. 

We are certainly not claiming that this approach 
provides a complete account of  how observers calculate 
blur. For example, a wide range of factors are important 
in understanding both accommodation and emmetropiza- 
tion (e.g., chromatic aberrations, the phase of fringes 
etc.). Furthermore, the method of producing blur by 
altering the slope of  the spectrum is not a good model of 
optical blur. And as noted, this is not a model of  how 
observers "discriminate" blur. Rather, the goal of these 
studies was to determine the source of the variability 
found in the slopes of  the amplitude spectra of  natural 
scenes, and determine whether this information could be 
used to identify blur in these scenes. 

rectified contrast spectrum (RCS) provides a means of 
separating the amplitude of the structure from the density 
of  the structure. By calculating the amplitude of only 
those regions which exceed a predetermined threshold, 
our results show that one can provide a reasonable 
prediction of when an image is blurred. This approach 
suggests that a significant portion of the variability found 
in the amplitude spectra of  natural scenes is due to the 
variability in the density of  structure at different sca les - -  
not simply the amplitude of that structure. Ruderman's  
(1996, 1997) approach of modeling the 1If structure of  
the environment in terms of a sum of occluding surfaces 
will likely provide further insights into the interactions of 
element density as a function of scale. 

Although the results predicting blur with this model 
appear promising, it is acknowledged that the global 
measure is fundamentally limited. In the real world, the 
limited depth of focus of  the eye will produce some 
regions that are in focus, with others out of  focus. Clearly, 
the method derived here must be extended to track 
individual edges across scale in order to provide a more 
accurate account of how observers judge blur. However, 
there are some cases where a global model might be 
useful. In emmetropization (e.g., Troilo & Wallman, 
1991), eye growth appears to be modulated by the optical 
image quality (i.e., focus). The information that the visual 
system uses to judge overall image focus is still a matter 
of  debate. Although further research is required, we 
believe it an interesting question whether this system uses 
anything analogous to the methods in this paper to 
estimate the general state of defocus found within the 
retinal image. 

SUMMARY 

We conclude that the main insight one gains into the 
visual system by understanding the amplitude spectrum 
of natural scenes is in understanding the overall sen- 
sitivity of visual neurons. In line with Brady & Field 
(1995), it is proposed that the "vector magnitude" of  
visual neurons increases in proportion to frequency. With 
images that have spectra which decrease in proportion to 
frequency (i.e., l /f) ,  this results in a fiat response across 
the spectrum (out to approximately 20 cyc/deg). It is 
proposed that the principle advantage of this fiat response 
is that it allows the information at different scales to be 
represented by neurons with similar dynamic range (i.e., 
the same level of  noise). 

However,  the amplitude spectrum provides only a 
partial description of the relative activity of cells at 
difference scales. Some images have steep slopes because 
the structure at high frequencies has relatively low 
contrast. In such a case the image is blurred and the cells 
responding at high frequencies will have relatively low 
responses. For some images with steep spectra, the high 
frequency regions have relatively few regions covered by 
high frequency structure, even though that structure may 
have the same contrast as lower frequency structure. The 
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