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Natural scenes like most all natural data sets show considerable redundancy. Although

many forms of redundancy have been investigated (e.g., pixel distributions, power spectra,

contour relationships, etc.) estimates of the true entropy of natural scenes have been largely

considered intractable. In this paper, we describe a technique for estimating the entropy

and relative dimensionality of image patches based on a function we call the proximity

distribution (a nearest-neighbor technique). The advantage of this function over simple

statistics such as the power spectrum is that the proximity distribution is dependent on

all forms of redundancy. We demonstrate that this function can be used to estimate the

entropy (redundancy) of 3×3 patches of known entropy as well as 8×8 patches of Gaussian

white noise, natural scenes, and noise with the same power spectrum as natural scenes.

The techniques are based on assumptions regarding the intrinsic dimensionality of the data,

and although the estimates depend on an extrapolation model for images larger than 3 ×

3, we argue that this approach provides the best current estimates of the entropy and

compressibility of natural-scene patches, and that it provides insights into the efficiency of

any coding strategy which aims to reduce redundancy. We show that the sample of 8 × 8

patches of natural scenes used in this study have less than half the entropy of 8 × 8 white

noise and less than 60% the entropy of noise with the same power spectrum, suggesting

that the redundancy of natural scenes is not due solely to pairwise correlations. In addition,

given a finite number of samples (< 220) drawn randomly from the space of 8 × 8 patches,

the subspace of 8 × 8 natural-scene patches shows a dimensionality that depends on the

sampling density and for low densities is significantly lower dimensional than the space of

8 × 8 patches of white noise and noise with the same power spectrum.

c© 2006 Optical Society of America
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1. INTRODUCTION

To be efficient, any coding strategy must take into account the statistical redundancy of the signals

that are to be encoded. Whether the purpose is to compress an image or to encode an image to

facilitate recognition, it can be argued that one must take advantage of the redundant structure

of the data. Recent studies of both the visual and auditory systems of vertebrates, have argued

that these sensory systems make use of the statistical redundancy of natural signals in an attempt

to maximize coding efficiency1,2, 3, 4 (see Ref. 5 for a review). However, in general, measuring the

true entropy of a signal class has proved computationally intractable for all but extremely small

data sets. Without knowledge of this redundancy, it remains an open question of how the absolute

efficiency of these sensory systems, or of any compression system, should be quantified.

Natural scenes have been studied extensively over the last two decades and these studies have

revealed that such images have a large number of statistical regularities. Kersten3 was able to

provide an upper bound on the entropy of coarse quantized images based on the ability of human

observers to guess the values of missing pixels. However, there was no assumption that this ap-

proach converged on the true entropy. A variety of other efforts have measured particular forms

of redundancy including pairwise statistics as described by the power spectra and autocorrelation

function (see Ref. 1) as well as a variety of other structures including the contour structure (e.g.,

Ref. 6), the pairwise relations between non-linear transforms of the image,7,5 and the low-order

pixel statistics.8 Lee, Pederson and Mumford9 provided a detailed analysis of the statistical struc-

ture of 3 × 3 high-contrast patches of natural scenes. Although they did not provide a measure of

entropy, they demonstrated that most of their natural-scene patches occupied only a small fraction

of the measured space.

Sparse coding techniques (e.g, Ref. 10) and related ICA techniques (e.g., Ref. 11) search for

solutions which attempt to minimize the dependencies between basis vectors. If such dependencies
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could be removed, then the response histograms of the vectors (the marginals) could be used to

determine the entropy. However, despite the name, the Independent Components produced by ICA

are far from independent. Similarly, compression techniques such as JPEG12 and JPEG-200013

employ a discrete cosine transform (DCT) and discrete wavelet transform (DWT), respectively,

to attempt to minimize dependencies. The DCT/DWT basis coefficients are then processed by a

Huffman or arithmetic encoding stage which attempts to remove redundancy and thus yield a highly

compressed stream. Indeed, one can provide an estimate of entropy based on the average bit-rate of

this compressed stream for a particular class of input. However, such an approach assumes that the

compression strategy is ideal, and thus the compressed stream is maximally compressed. In reality,

the basis coefficients show marked statistical dependencies across space, scale, and orientation; and

the majority of encoders cannot take into account all of these dependencies. As a result, current

compression algorithms provide only an upper bound on the true image entropy.

This paper describes a technique to estimate entropy of a complex data set and applies this

estimate to natural scenes. Although we focus on natural scenes, we emphasize that the techniques

described here are by no means limited to visual signals; the methodology can be applied to any

data which behave according to a specific assumption (described shortly).

The major difficulty in computing entropy is that the standard approach generally requires knowl-

edge of the full probability distribution from which the data are realized. Consider, for example,

a source which emits 8 × 8-pixel images X = [X1,X2, ...,X64] in which each pixel Xi takes on one

of ℓ = 256 shades of gray. In this case, there are ℓ64 = 25664 = 2512 possible 8 × 8-pixel patterns

(equivalent to approximately 1054 googols or roughly 1067 times the estimated number of particles

in the universe). To calculate the true entropy of a set of 8 × 8 natural images one must therefore

obtain enough images to determine the probability distribution pX over all 2512 images and then

use this probability distribution to calculate the entropy.
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In most cases, estimates of the entropy consider only the first and sometimes second-order entropy

of a particular population. Fourier spectral analysis, in particular, has proved useful for analyzing

pairwise pixel-value relationships and has given rise to well-accepted properties such as the 1/f2

power spectrum (f = spatial frequency) of natural scenes.14,1, 15 In addition, marginal probability

distributions of DCT and DWT coefficients are typically well-modeled by using a leptokurtotic

generalized Gaussian density, which has served as a cornerstone in the design of quantization and

rate-control mechanisms of modern image compression standards.12,13, 16 Indeed, several investiga-

tors have shown correspondences between cortical simple-cell receptive fields and the basis functions

achieved when one attempts to jointly optimize kurtosis/statistical independence and reconstruc-

tion accuracy. However, regardless of the (linear) basis set used to represent the data, unless the

basis coefficients are truly independent (i.e., the joint distribution can be factorized into a product

of marginal distributions) computing the redundancy of the data based on these marginals will lead

to an overestimate of entropy (underestimate of redundancy). Although attempts have been made

to model the dependencies that exist between basis coefficients,5,17, 8 the somewhat intractable

combinatorics involved in such an approach limits the numbers of coefficients which can be used to

derive the joint distributions. Indeed, we cannot determine the efficiency of any particular coding

or compression algorithm without knowing the true entropy. And, without this estimate, we cannot

determine how much of the redundancy has been exploited by any particular coding or compression

algorithm.

In this paper, we take an alternative approach to estimating the redundancy of natural scenes

which does not require a direct computation of the probability distribution of the data. Instead,

the technique we employ borrows heavily from nearest-neighbor-based techniques which have pre-

viously been used to estimate entropy of relatively low-dimensional data.18,19, 20 We note the fact

that images drawn from the natural environment are not random patterns; rather, natural scenes
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typically occupy a subspace of the space of all possible images21 (see also Ref. 22, Theorems 3.1.1

and 15.7.1; Ref. 23). The redundancy of the data is determined by the size of this subspace. Ac-

cordingly, we apply nearest-neighbor-based techniques to estimate the relative density of the space

of natural scenes by measuring the distances between images as the sample size is increased. We

extend the previous methodology to data with larger dimensionality and use this to calculate two

properties of images:

1. The entropy, which specifies the effective (log) size of the subspace;

2. The relative dimensionality, which specifies the dimensionality that the subspace appears to

have given a limited number of samples.

This entropy measure can be likened to a kind of “Reverse Birthday Problem.” In the Birthday

Problem, one estimates the probability (p) that two people have the same birthday given a group

of people of size N and ℓ = 365 possible birthdays. With N > 23, the probability p > 0.5 that any

two people will have the same birthday24 (see also Ref. 25). In the reverse problem, one estimates

the number of birthdays ℓ from the probability of obtaining a pair of matching birthdays given a

group of size N . This general approach has a long history and was used as far back as Ref. 26 to

estimate the population of fish in a lake from samples taken from the lake. For our purposes, the

argument is that the relative probability of co-occurrences can provide not just an estimate of the

size of the population, but the entropy of the population. This technique requires fewer samples

than the total size of the population and far fewer samples than that required to estimate the full

probability distribution of the population.

Furthermore, extending the Reverse Birthday Problem by relaxing the perfect-match criterion

to a match of within D days requires sampling only
⌈
1.2
√

365/(2D + 1)
⌉

people24 to estimate

the number of birthdays. In general, given N samples with N sufficiently large, and two average
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nearest-neighbor distances DA and DB for data sets A and B, respectively, if DA > DB we expect

the entropy of A to be greater than the entropy of B. This is the basic technique which we employ:

Given samples from a data set, we estimate the entropy of the data based on nearest-neighbor

matches in which D is defined as Euclidean distance. This process is illustrated in Figure 1 for

samples consisting of natural-scene patches.

As shown in Figure 1, images from a given data set were randomly divided into two groups:

Group T , which consisted of images whose patches served as the to-be-matched “target” samples;

and Group N , which consisted of images whose patches served as the target’s neighbors. The

images were divided into r × r patches, and then for each target patch in Group T , an exhaustive

search was performed to find the corresponding patch in Group N closest in Euclidean distance

to the target patch.

Following from the work by Kozachenko and Leonenko18 and Victor19 we introduce a func-

tion which we call the “proximity distribution” which specifies the average (log) nearest-neighbor

distance as a function of the number of samples (see Figures 5, 6, 9, 10, later in this paper). Our

primary assumption is that given a sufficient number of samples, the proximity distribution behaves

as a linear function of the (log) number of samples (i.e., the function has a fixed slope); this as-

sumption holds for any data set which is subject to noise (e.g., digitized natural scenes). Thus, with

a sufficient number of samples, Kozachenko and Leonenko18 and Victor19 argue that the proximity

distribution can lead to an estimate of the entropy of the data. Even in cases in which only a portion

of the proximity distribution function can be measured, we argue that rational extrapolations can

be made which allow a reasonable estimate of entropy.

As we demonstrate in Section 2.D, nearest-neighbor-based techniques can estimate the entropy

of 3×3 natural images using fewer than 218 = 262,144 samples. Furthermore, we present in Section

4 extrapolations of the proximity distribution functions which can be used to estimate entropy of
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8 × 8 images using only 218 samples. We demonstrate that this approach estimates the entropy of

8×8 patches drawn from natural scenes to be less than half the entropy of 8×8 patches of Gaussian

white noise.

In addition to estimating entropy, there exists a wide body of research developed to estimate the

dimensionality of a data set27,28, 29, 30, 31, 32, 33 (see Ref. 34 for a review). Examples of such techniques

include projection-based dimensionality-reduction methods such as Principal Components Analysis,

non-linear methods based on local topology such as Isomap32 and LLE,33 and a variety of techniques

based on nearest-neighbors.27,28, 29, 30, 31 It should be emphasized that the definition of “dimension”

varies in the literature; a number of dimensions have been reported, including correlation dimension,

Hausdorff dimension, pointwise dimension, quantization dimension; see Ref. 35 for a review. Here,

we borrow from these nearest-neighbor-based approaches and use our proximity distributions to

estimate dimensionality. However, whereas the majority of dimensionality estimation techniques

aim to estimate the intrinsic dimensionality of the data, here we do not focus on the intrinsic

dimensionality for two reasons: (1) digitized natural images are both quantized and subject to

noise, and we argue that the intrinsic dimensionality is equivalent to the dimensionality of the

space in which the data are embedded (e.g., the intrinsic dimensionality is given by the number

of pixels for digitized natural scenes); (2) real sensory systems cannot encode input signals in an

error-free manner, and thus the error puts a limit on the entropy and dimensionality that is relevant

to the sensory system. Accordingly, in this paper, we focus on the relative dimensionality (RD)

defined as the dimensionality which the data appear to have given a limited number of samples (the

sampling density). As has been noted previously (see Ref. 34), and as we will confirm, the relative

dimensionality changes as a function of the sampling density. We emphasize that this dependence

on sampling density can provide insights into the geometry of the data space (the manifold of

natural scenes).
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The relative dimensionality is analogous to the dimensionality estimates given by techniques such

as Isomap32 and LLE.33 However, the emphasis here is that the dimensionality is dependent on the

number of samples, and that this dependence can provide insight into the data space. For example,

Figure 2(a) depicts the classical Swiss roll data32 to which Gaussian white noise has been added.

Without the addition of noise, the data would have an intrinsic dimensionality of two; i.e., the data

would lie on the two-dimensional surface (manifold) shown as a wireframe in Figure 2(a), and thus

with a proper transformation which “unrolls” the data, any data point could be described with

only two coordinates. The addition of the noise, however, increases the intrinsic dimensionality of

the data to three (three coordinates are required to specify any data point).

Clearly, with enough samples, one can readily visualize the intrinsic dimensionality of the

data. However, given only a coarse sampling, the data might appear to have a vastly different

dimensionality—a dimensionality which is relative to the number of samples and which may thus

provide insight into the geometry of the space. For example, Figures 2(b), 2(c), and 2(d) depict the

noisy swiss roll data given only 8, 80, and 800 random samples, respectively. In Figure 2(b), there

is no clear geometry to the data; thus, given only 8 samples, one would estimate that the data

are three dimensional (RD = 3). In Figure 2(c), given 80 samples, the swiss-roll geometry begins

to emerge, and one might guess that the data fall on this two-dimensional, swiss roll manifold

(RD = 2). In Figure 2(d), given 800 samples, it becomes apparent that there is actually a thickness

to the swiss roll, and thus the relative dimensionality is equivalent to the intrinsic dimensionality

of three.

Now consider the data shown in Figure 3(b), which corresponds to an unrolled version of the

noisy Swiss roll data. As with the noisy Swiss roll data, these unrolled data have an intrinsic

dimensionality of three. However, because the data have been unrolled, as shown in Figure 3(b),

RD = 2 given only eight samples. Similarly, given 80 samples [Figure 3(c)], there are still an
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insufficient number of samples to discover the thickness of the plane (RD = 2). At 800 samples

[Figure 3(d)], one begins to discover the third dimension (RD = 3).

Thus, even though the noisy Swiss roll data and the unrolled version of the data have the same

intrinsic dimensionality and entropy, the data sets have markedly different geometries. Accordingly,

each data set gives rise to a different vector of relative dimensionalities: [3, 2, 3] and [2, 2, 3] for the

rolled and unrolled versions, respectively, given 8, 80, and 800 samples. In Sections 2.D and 3, we

use nearest-neighbor-based techniques to measure the relative dimensionality given 1−218 samples

of 3 × 3 and 8 × 8 images, respectively. We show that in this range of sample sizes the relative

dimensionality of natural-scene patches is significantly lower than the relative dimensionality of

Gaussian white noise patches, and that this difference in relative dimensionality increases for larger

patch sizes.

This paper is organized as follows: Section 2 describes the general methods used in the experi-

ments performed to investigate entropy and relative dimensionality, including details of the exper-

imental stimuli and the theory behind the methods. Results and analyses of the experiments are

provided throughout Sections 3, 4, and 5. A discussion is provided in Section 6. General conclusions

are provided in 7.

2. GENERAL METHODS

This section describes the experimental stimuli and procedures used in the experiments; an overview

of the theory underlying the techniques; a derivation of the theory for Gaussian white noise; and a

verification of the theory on 3 × 3 patches.

Three experiments were performed to estimate the entropy and dimensionality of various types

of images. First, nearest-neighbor distances were measured for 8×8 patches cropped from images of

various types; this experiment was designed to investigate the entropy and relative dimensionality of
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a typical 8×8 image patch (Section 3.A). Next, nearest-neighbor distances were measured for 8×8

patches in which each patch was normalized for mean intensity and RMS contrast; this experiment

was designed to investigate the entropy and relative dimensionality of the pattern of a typical 8× 8

image patch (Section 3.B). Finally, nearest-neighbor distances were measured for 16 × 16 patches

to provide an estimate of how entropy and relative dimensionality scale with patch size (Section 5).

2.A. Experimental Stimuli

Stimuli used in this study were r × r-pixel patches cropped from 8-bit R × R-pixel digitized and

natively digital images with pixel values in the range 0 − 255. Five types of images were used:

1. Gaussian white noise, in which each pixel was drawn independently from a common Gaussian

distribution;

2. 1/f noise, in which each Fourier component was drawn independently from a Gaussian dis-

tribution with standard deviation inversely proportional to the spatial frequency of the Fourier

component;

3. 1/f2 noise, in which each Fourier component was drawn independently from a Gaussian

distribution with standard deviation inversely proportional to the squared spatial frequency

of the Fourier component;

4. Spectrum-equalized noise, in which each Fourier component was drawn independently from

a Gaussian distribution with variance proportional to the sample variance measured using a

collection of natural scenes;

5. Natural scenes obtained from the van Hateren database.36

The (real-valued) pixels of all images were quantized to 8 bits (256 levels) of grayscale resolution,

as necessary, via uniform scalar quantization37 in which real-valued pixel X was mapped to its
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quantized (discrete-valued) version X∆ via X∆ =
⌊
X + 1

2

⌋
, where ⌊·⌋ denotes the floor operator.

The details of the image-generation process are as follows (experiment-specific details are provided

throughout Sections 3 and 5).

Gaussian White Noise: The Gaussian white noise images were generated by drawing R × R

independent realizations from the following Gaussian distribution:

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (1)

where the mean µ and standard deviation σ were set as described in Sections 3 and 5. The pixel

values of the resulting images were quantized to 8 bits. Figure 4(a) depicts one of the white noise

images used in this study.

1/f and 1/f2 Noise: The 1/f noise images were generated by first creating an R × R Gaussian

white noise image via Equation (1), and then filtering that image with a digital, finite impulse

response filter with the following frequency response:

H(u, v) =





1 u = v = 0

1√
u2+v2

else

(2)

where u, v ∈ [0, R − 1]. The 1/f2 noise images were generated in a similar fashion by creating an

R×R Gaussian white noise image [Equation (1)] followed by filtering with a digital filter with the

following frequency response:

H(u, v) =





1 u = v = 0

1
u2+v2 else

(3)
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where u, v ∈ [0, R−1]. The filtering was performed in the frequency domain by means of the discrete

Fourier transform (DFT) and multiplication of frequency responses (DFT coefficients). The pixel

values of the resulting images were offset and scaled to span the range 0− 255 and then quantized

to 8 bits. Figures 4(b) and 4(c) depict, respectively, sample 1/f and 1/f2 images used in this study.

Spectrum-Equalized Noise: The spectrum-equalized noise images were generated in a fashion

similar to that used for the 1/f and 1/f2 noise images except that the filtering was applied sepa-

rately to each r× r-pixel patch and was performed by using an empirical H(u, v) determined based

on the spectra of a large collection of r×r-pixel patches. Specifically, a Gaussian white noise image

was created via Equation (1), and then frequency-domain filtering was performed by multiplying

the frequency response of each r×r-pixel patch with the following r×r-element frequency response:

H(u, v) =
√

σ2
ℜ(u, v) + σ2

ℑ(u, v) (4)

where u, v ∈ [0, r − 1], and where σℜ(u, v) and σℑ(u, v) denote the sample standard deviations of

the real and imaginary components, respectively, of the DFT coefficient corresponding to frequency

u, v; the sample standard deviations σℜ(u, v) and σℑ(u, v) were measured based on a collection of

r×r patches from 71 natural scenes (described next). The pixel values of the resulting images were

quantized to 8 bits. Figure 4(d) depicts one of the spectrum-equalized noise images used in this

study.

Natural Scenes: Seventy one digitized natural scenes were selected at random from the van

Hateren database.36 The original images were of size 1536×1024 and contained 16-bit pixel values.

A 1024× 1024 section was cropped from each image, and then the pixel values of that 1024× 1024

section were converted to a floating-point representation. The pixels were then offset and scaled to
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span the range 0− 255, and then quantized to 8 bits. Ref. 38 provides further details regarding the

specific images used in this study. Figure 4(e) depicts one of these images. We wish to emphasize

that our estimates of entropy and relative dimensionality are dependent on the particular class of

images used here, and thus the results should not be considered universal for all natural scenes.

The van Hateren database is attractive due to its widespread use; however, factors such as camera

blur, scene content, and noise all have a significant impact on the results.

2.B. Experimental Procedures

Let D∗
N denote the Euclidean distance between a patch and its nearest neighbor among N neighbors.

The average log nearest-neighbor distance E {log2 D∗
N} was estimated by using an exhaustive, brute-

force search procedure. Each set of R × R images from each image class was randomly divided

into two groups: Group T , which consisted of images whose patches served as the to-be-matched

“target” samples; and Group N , which consisted of images whose patches served as the target’s

neighbors. Patches of size k = r×r pixels were cropped from each R×R image in a non-overlapping,

sequential raster-scan order starting from the top-left corner of the image.

For each target patch in Group T , an exhaustive search was performed to find the corresponding

patch in Group N closest in Euclidean distance to the target patch. This procedure is illustrated

in Figure 1 and is formally defined as follows: Let X(Tt), t ∈ [1, T ], denote the tth target patch, and

let X(Nn), n ∈ [1, N ], denote one of its neighbors. For each patch in Group T and each value of N ,

the search procedure yields the Euclidean distance D∗
N,t between X(Tt) and its nearest neighbor

among N neighbors via

D∗
N,t = min

n∈[1,N ]

∥∥∥X(Tt) − X(Nn)
∥∥∥

L2

=

(
min

n∈[1,N ]

{
k∑

i=1

(
X

(Tt)
i − X

(Nn)
i

)2
})1/2

(5)
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where Xi denotes the ith pixel of X. The search procedure was performed to compute D∗
N,t for all

T target patches, and then E {log2 D∗
N} was estimated via the sample mean over all target patches,

i.e., E {log2 D∗
N} ≈ 1

T

∑T
t=1 log2 D∗

N,t.

In all experiments, D∗
N,t was measured at power-of-two values of N up to 2K (i.e., N =

1, 2, 4, ..., 2K ), where K was determined by the total number of images in Group N , the latter

of which was chosen based on the patch size (see Sections 3 and 5). This process was repeated for

at least three trials for each patch in Group T . Due to the enormous memory and processing-time

requirements, the total number of patches in Group T was selected based on initial runs and was

varied across image classes and patch size; further details regarding the total number of patches in

Groups T and N are provided throughout Sections 3 and 5.

2.C. Theory

In this paper, we estimate entropy and dimensionality based on nearest-neighbor distances.

This section provides a brief outline of the mathematical theory upon which this technique is

based. The estimation of entropy based on nearest-neighbor distances was initially proposed by

Kozachenko and Leonenko,18 and later applied to neural data by Victor19 and subsequently to

the estimation of mutual information by Kraskov et al.20 and by Kybic.39 This is a so-called

binless estimator of differential entropy which operates by estimating iX(x) , − log2 fX(x) via

nearest-neighbor distances, where X denotes a (possibly vector-valued) random variable with

corresponding probability density function fX(x). In this formulation, differential entropy, h(X),

is the expected value of iX(x):

h(X) , −
∫

x∈A

fX(x) log2 fX(x)dx
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=

∫

x∈A

fX(x)iX(x)dx

= E {iX(x)}

≈ 1

M

M∑

m=1

îX(xm) (6)

where the final relation approximates the expectation in the third relation with the sample mean

computed using M observed samples, x1,x2, ...,xM , drawn according to fX. Specifically, the ap-

proximation results from: (1) replacing the integral with a sum; (2) assuming fX(x)dx ≈ 1
M , ∀xm;

and (3) using îX(xm) as an estimator of iX(xm).

The estimator îX(x) is computed based on the Euclidean distance D∗
N between x and its nearest

neighbor among the remaining N = M − 1 observations as

îX(x) = kE {log2 D∗
N} + log2

(
AkN

k

)
+

γ

ln 2
(7)

where γ is the Euler constant, and where Ak = kπk/2/Γ
(

k
2 + 1

)
denotes the surface area of a

k-dimensional hypersphere. Combining Equations (6) and (7), h(X) is approximated by

h(X) ≈ − k

M

M∑

m=1

log2 D∗
N,m + log2

(
AkN

k

)
+

γ

ln 2
(8)

where D∗
N,m is the Euclidean distance between xm and its nearest neighbor among the other

N = M − 1 observations.

For images in which the pixel values are drawn independently from a common Gaussian

distribution, the pixels are independently and identically distributed (iid) Gaussian. The Gaussian

distribution possess several favorable mathematical properties which facilitate an analysis of
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its nearest-neighbor-distance behavior and entropy. In particular, the differential entropy of a

Gaussian random variable X can be computed directly via

h(X) =
1

2
log2(2πeσ2) bits (9)

where σ denotes the standard deviation of the Gaussian. Moreover, of all distributions with a given

fixed variance, the Gaussian distribution maximizes differential entropy (Ref. 22, Theorem 9.6.5).

In addition, for iid Gaussian realizations there exists an analytical solution for the expected log

nearest-neighbor distance among N neighbors (E {log2 D∗
N}). We show this by first deriving the

distribution of Euclidean distances between two patches, and then we extend that result to the

expected minimum distance among N patches.

Distribution of distances between two patches: Without loss of generality, we assume that each

pixel is drawn from a zero-mean Gaussian distribution.40 Let Xi ∼ N (0, σ2) and Yi ∼ N (0, σ2)

denote the ith pixel of image X and Y, respectively. Clearly, Xi − Yi ∼ N (0, 2σ2). Thus, we can

define a new random variable D̃ = 1
2σ2

∑k
i=1(Xi − Yi)

2, which follows a χ2 distribution with k

degrees of freedom.41 Observe that D̃ is 1
2σ2 times the squared Euclidean distance between X and

Y. Given that D̃ ∼ χ2
k, the cumulative distribution function is given by F eD(d) = 1−Γ(k

2 , d2

2 )/Γ(k
2 ),

where Γ(a, x) and Γ(a) are the upper incomplete and complete gamma functions, respectively; and

the corresponding probability density function is given by f eD(d) = dk/2−1e−d/2

2k/2Γ(k
2
)

.

Expected nearest-neighbor distance among N patches: Let D̃∗
N denote 1

2σ2 times the squared

Euclidean distance between a patch and its nearest neighbor among N neighbors. The cumulative

distribution function for D̃∗
N is thus given by F eD∗

N
(d) = 1−(1−F eD(d))N and the corresponding prob-

ability distribution function is given by f eD∗

N
(d) = N(1 − F eD(d))N−1f eD(d). Note that the nearest-

neighbor distance D∗
N = (2σ2D̃∗

N )1/2 and thus log2 D∗
N = 1

2 log2(2σ
2D̃∗

N ) = 1
2 log2(2σ

2)+ 1
2 log2 D̃∗

N .
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The expected log nearest-neighbor distance E{log2 D∗
N} is therefore given by

E{log2 D∗
N} =

1
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2
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0
Γ

(
k

2
,
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)N−1

ζk/2−1e−ζ/2 log2(ζ)dζ (10)

To verify that the experimental procedures described in Section 2.B yield results which are con-

sistent with Equation (10), 8 × 8 patches cropped from images in which the pixel values were iid

Gaussian were used as a control condition. The Gaussian white noise images were generated as

described in Section 2.A via Equation (1) with fixed mean µ = 127.5, and with three different

standard deviations σ = 9.43, σ = 2.77, and σ = 0.77. Seventeen images of size 1024 × 1024 pix-

els were generated for each standard deviation, one of which was placed into Group T , and the

remaining 16 of which were placed into Group N . Thus, there were a total of 1024×1024
8×8 = 16,384

target patches and 16 × 1024×1024
8×8 = 262,144 potential neighbors.

Figure 5 depicts proximity distribution functions computed via Equation (10) (computed digi-

tally via a summation-based approximation to the integral) and the corresponding data measured

experimentally. In each graph, the vertical axis corresponds to E{log2 D∗
N} and the horizontal axis

corresponds to the number of samples (here, N = 1, 2, 4, ..., 218). Figure 5(a) depicts proximity

distribution functions for a fixed dimensionality k = 64 and various values of standard deviation

σ. Figure 5(b) depicts proximity distribution functions for a fixed standard deviation σ = 0.77 and

various values of dimensionality k. Notice that the theoretical and experimental results are very
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much in agreement (R2 > 0.99).

The trends in Figure 5(a) demonstrate that for a fixed dimensionality (k = 64), decreasing the

standard deviation of the underlying Gaussian effects a downward shift in the proximity distribution

function. Indeed, this observation follows directly from Equation (10): Notice that only the left-hand

portion of the sum depends on σ, and that this portion depends only on σ. The trends in Figure

5(b) demonstrate that when the standard deviation is fixed (σ = 0.77), changing the dimensionality

effects both a downward shift and a change in the slope.

2.D. Verification of the Theory on 3 × 3 Patches

When the slope of the proximity distribution function of a data set has converged (i.e., the relative

dimensionality has converged to the intrinsic dimensionality of the data), there are a sufficient

number of samples to estimate the entropy. Here, we show this result experimentally by applying

Equation (8) to nearest-neighbor distances measured for 3 × 3 patches.

Patches of size 3× 3 pixels (r = 3, k = 9) drawn from Gaussian white noise, spectrum-equalized

noise, and natural scenes were used in this verification experiment. The Gaussian white noise images

were generated via Equation (1) with µ = 127.5 and σ = 32. For the Gaussian white noise and

spectrum-equalized noise images, 13 images of size R × R = 513 × 513 pixels were generated as

described in Section 2.A; for each image type, three images were placed into Group T , and the

remaining 10 images were placed into Group N , resulting in 3× 513×513
3×3 = 87,723 target patches and

10× 1024×1024
8×8 = 292,410 potential neighbors. For the natural scenes, images of size 1024×1024 pixels

were obtained as described in Section 2.A and patches were selected from the top-left 1023 × 1023

portion of each image. Five images were placed into Group T , and 66 images were placed into

Group N , resulting in 5 × 1023×1023
3×3 = 581,405 target patches and 66 × 1023×1023

3×3 = 7,674,546

potential neighbors.
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Figure 6 depicts the resulting proximity distribution functions; the horizontal axis denotes the

number of samples N and the vertical axis denotes the corresponding log nearest-neighbor distance

averaged over all patches in Group T . Relative dimensionalities and estimates of entropy [computed

via Equation (8)] based on these proximity distribution data are provided in Figures 7 and 8,

respectively. The solid gray line in Figure 7 denotes an intrinsic dimensionality of k = 9; the solid

gray lines in Figure 8 denote the true values of entropy as computed via Equation (9). Note that

due to the presence of photon noise, the natural scenes also possess an intrinsic dimensionality of

k = 9.

Notice from the proximity distribution functions of Figure 6 that for a given number of sam-

ples, spectrum-equalized noise exhibits a lower average log nearest-neighbor distance than Gaussian

white noise, and natural scenes exhibits a lower average log nearest-neighbor distance than both

Gaussian white noise and spectrum-equalized noise. Similarly, notice from Figure 7 that although

the relative dimensionality curves for all three image types eventually converge to a dimension-

ality of approximately k = 9, spectrum-equalized noise exhibits a lower relative dimensionality

than Gaussian white noise, and natural scenes exhibits a lower relative dimensionality than both

Gaussian white noise and spectrum-equalized noise.

Because the relative dimensionality curves of Figure 7 have approximately converged to a dimen-

sionality of k = 9 given N = 217 samples, there are sufficient data to estimate entropy. The entropy

estimates shown in Figure 8 were obtained by using Equation (8) with k = 9. Indeed, for Gaussian

white noise and spectrum-equalized noise, the estimates of entropy yield the correct values: 63 bits

(7.0 bits/pixel) for Gaussian white noise and 49 bits (5.5 bits/pixel) for spectrum-equalized noise

[the actual entropies were computed via Equation (9); see Ref. 42]. Here, we obtain an estimate of

35 bits (3.9 bits/pixel) for the entropy of 3 × 3 natural scenes. We stress again that this result is

not universal for all natural scenes; rather, it is dependent on the particular sample of images from
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the van Hateren database used here.

These results confirm that our main assumption holds for the images used here: Given a sufficient

number of samples, the relative dimensionality converges on the intrinsic dimensionality of the data,

and thus the entropy estimate is close to the true entropy of the data. In the following sections,

we investigate extensions of these estimators to 8 × 8 patches of various types of images for which

there are an insufficient number of samples to directly apply the estimates.

3. RESULTS FOR 8 × 8 PATCHES

In Experiment I, patches of size 8 × 8 pixels were used (r = 8, k = 64). Each patch X =

[X1,X2, ...,X64] can thus be viewed as a point in a 64-dimensional metric space V64 with dis-

tance function d(X,Y) = ‖X− Y‖L2
=
√∑64

i=1(Xi − Yi)2. In our experiments, each patch was a

discrete-valued random vector in which each pixel was limited to integer values in the range 0−255

(ℓ = 256 levels) as a result of the 8-bit quantization, and therefore the actual space is limited to

L = ℓk = 25664 = 2512 possibilities.

3.A. 8 × 8 Patches

To serve as a control condition, patches of size 8 × 8 pixels were cropped from Gaussian white

noise images. Nineteen Gaussian white noise images were generated as described in Section 2.A

via Equation (1) with µ = 127.5 and σ = 36. Three images were placed into Group T , and the

remaining 16 images were placed into Group N , resulting in 3× 1024×1024
8×8 = 49,152 target patches

and 16 × 1024×1024
8×8 = 218 = 262,144 potential neighbors.

To investigate the effects of spatial correlations on nearest-neighbor distances, 8 × 8 patches

cropped from images with 1/f and 1/f2 amplitude spectra (1/f2 and 1/f4 power spectra, respec-

tively) and from images with spectrum-equalized patches were used. In this paradigm, the image’s

DFT coefficients form a set of independent Gaussian random variables with standard deviations
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inversely proportional to spatial frequency. Nineteen 1/f , 1/f2, and spectrum-equalized noise im-

ages of size 1024 × 1024 pixels were generated as described in Section 2.A. For each image type,

three images were placed into Group T , and the remaining 16 images were placed into Group N ,

resulting in 3 × 1024×1024
8×8 = 49,152 target patches and 16 × 1024×1024

8×8 = 218 = 262,144 potential

neighbors.

In addition, to investigate the effects of the statistical properties of natural scenes on nearest-

neighbor distances, 8 × 8 patches cropped from images obtained from the van Hateren database36

were used. Seventy one natural scenes were obtained as described in Section 2.A, five of which

(chosen at random) were placed into Group T , and the remaining 66 of which were placed into

Group N . Thus, there were a total of 81,920 target patches, and a total of 1,081,344 potential

neighbors.

Figure 9(a) depicts the proximity distribution functions for the patches taken from the 1/f , 1/f2,

and spectrum-equalized noise images (gray, white, and light-gray circles, respectively), and from

the natural scenes (stars), along with the proximity distribution function for Gaussian white noise

patches with σ = 2.77 replotted from Figure 5 (black circles). The horizontal axis denotes the

number of samples N and the vertical axis denotes the corresponding log nearest-neighbor distance

averaged over all patches in Group T .

Images which possess power spectra that follow 1/fα demonstrate greater degrees of pairwise

pixel correlations for increasing values of α. Gaussian white noise images, which contain uncorrelated

pixels, possess an amplitude spectrum in which α = 0. The 1/f and 1/f2 images possess power

spectra in which α = 2 and α = 4, respectively (amplitude spectra in which α = 1 and α = 2,

respectively). The 8 × 8 patches of the spectrum-equalized noise images possess a power spectrum

in which α ≈ 2.8. Thus, the proximity distribution functions of Figure 9(a) demonstrate that for a

fixed variance, increasing pairwise correlations between pixels increases the magnitude of the slope
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of the proximity distribution functions, which therefore suggests a lower entropy state.

The data of Figure 9(a) also show that the proximity distribution function for the patches of

natural scenes lies below the proximity distribution function for the patches of spectrum-equalized

noise, despite the fact that the power spectra for these image-types are equalized. These data confirm

that the presence of spatial correlations does not provide a complete account for the redundancy

(lower entropy) of natural scenes.

Figure 9(b) depicts the relative dimensionality curves for these images computed as the magnitude

of the inverse of the instantaneous slope between successive pairs of measured values of E {log2 D∗
N}

(i.e., −d log2(N)/dE {log2 D∗
N}. The horizontal axis denotes the number of samples N and the

vertical axis denotes the corresponding dimensionality given N samples. Notice that for most values

of N (in particular, for N > 16), 1/f2 noise exhibits the lowest relative dimensionality, natural

scenes exhibits a slightly greater relative dimensionality than 1/f2 noise, spectrum-equalized noise

exhibits an even greater relative dimensionality, followed by 1/f noise, and then Gaussian white

noise. At N = 218 samples, the dimensionalities are approximately 13, 17, 27, 34, and 45 for 1/f2

noise, natural scenes, spectrum-equalized noise, 1/f noise, and Gaussian white noise, respectively.

Clearly, many more samples are needed before these relative dimensionality curves converge on the

intrinsic dimensionality of k = 64, and thus N = 218 is an insufficient number of samples to produce

a direct estimate entropy via Equation (8). In Section 4, we discuss extrapolation techniques which

attempt to overcome this limitation.

3.B. Mean- and Contrast-Normalized 8 × 8 Patches

Part of the redundancy in natural scenes can be attributed to the fact that natural scenes

contain many low-contrast regions (e.g., in sky), whereas noise images such as spectrum-equalized

noise only seldomly contain such low-contrast regions. To determine whether this prevalence
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of low-contrast patches can account for the differences in the proximity distribution functions,

Experiment II investigated the nearest-neighbor-distance behavior of the underlying patterns by

first normalizing the image patches for absolute luminance or RMS contrast. Specifically, each

patch X was adjusted to have a zero mean and unity vector norm (L2-norm) via

1. X := X− 1
64

∑64
i=1 Xi

2. X := 255X/
√∑64

i=1 X2
i

where Xi denotes the ith pixel of X. Here, we limited the analysis to those patches with variance

(after Step 1, above) of 1
64

∑64
i=1 X2

i > 2 to prevent both division by zero (in Step 2, above) and

amplification of noise.

The 1024 × 1024 images were randomly divided into Groups T (containing the to-be-matched,

target patches) and N (containing the neighbors). For the Gaussian white noise images, only a

single standard deviation σ = 36 was tested; Groups T and N consisted of 16,384 and 262,144

patches, respectively. For the 1/f , 1/f2, and spectrum-equalized noise images, Groups T and N

consisted of 49,152 and 262,144 patches, respectively. For the natural scenes, Groups T and N

consisted of approximately 68,000 and 900,000 patches, respectively.

Figures 10(a) and 10(b) depict the resulting proximity distribution and relative dimensionality

curves for Gaussian white noise (black circles), 1/f noise (gray circles), 1/f2 noise (white cir-

cles), spectrum-equalized noise (light-gray circles), and natural scenes (stars). In comparison to the

proximity distribution functions in Figure 9(a), notice that the curves for these mean- and contrast-

normalized data all demonstrate a decrease in slope, suggesting that more templates are needed to

describe the high-contrast patches to the same level of accuracy (vector norm of the difference) as
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that achieved when patches of all contrasts are considered. However, notice from Figure 10(a) that

the relative nearest-neighbor-distance behavior (rank order) of these various curves remains intact;

in particular, natural scenes still fall below spectrum-equalized noise. Thus, the redundancy found

in natural scenes cannot be attributed solely to the power spectrum, nor can it attributed to the

combination of the power spectrum and the prevalence of low-contrast patches.

To further investigate the effects of the power spectrum on nearest-neighbor distances, proximity

distribution functions were measured for whitened natural scenes. To each of the 71 natural scenes

(obtained as described in Section 2.A), the following whitening filter was applied:

H(u, v) =
(√

u2 + v2
)1.38

(11)

where u, v ∈ [0, 1023], and where the exponent 1.38 was measured by linearly regressing log-

magnitude (of the DFT coefficients averaged over all orientations) on log-frequency (radial distance

from zero-frequency) using all 71 images. The filtering was performed in the frequency domain by

means of the DFT and multiplication of frequency responses. The pixel values of the resulting

images were offset and scaled to span the range 0 − 255 and then quantized to 8 bits. The images

chosen for Groups T and N were whitened versions of the same images used for these groups in

Experiment I and in Section 3.B; thus, Groups T and N consisted of approximately 68,000 and

900,000 patches, respectively.

Figures 11(a) and 11(b) depict the resulting proximity distribution and relative dimensionality

curves for Gaussian white noise (black circles), spectrum-equalized noise (light-gray circles), natural

scenes (black stars), and whitened natural scenes (white stars). The application of a whitening

filter serves to remove average pairwise spatial correlations; thus, if the redundancy in the high-

contrast patches of natural scenes were due solely to these correlations, we would expect the nearest-
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neighbor-distance behavior of whitened natural scenes to be identical to that of Gaussian white

noise. Instead, we find the proximity distribution function for whitened natural scenes falls below

the proximity distribution function for Gaussian white noise, which indicates that fewer templates

are required (on average) to describe a whitened natural scene to the same level of accuracy as that

achieved for Gaussian white noise. These data further suggest that the redundancy of natural scenes

cannot be attributed to solely to a combination of the spectrum and the prevalence of low-contrast

patches.

4. ENTROPY EXTRAPOLATIONS (XENTROPY)

Whereas for the 3 × 3 patches analyzed in Section 2.D the relative dimensionality curves had

converged to the intrinsic dimensionality of the data (k = 9), the relative dimensionality curves

shown in Figure 9(b) for the 8 × 8 patches require a prohibitively large number of samples to

converge to a dimensionality of k = 64. As a result, applying Equation (8) using the corresponding

proximity distribution data would result in a poor estimate of entropy. To overcome this limitation,

we explore three techniques for extrapolating the proximity distribution data and thereby estimating

entropy based on the extrapolations. We define the term XEntropy to denote this extrapolated

entropy estimate and to reinforce the notion that these are only estimates of the entropy based on

extrapolations.

We use two constraints to aid in the extrapolations: (1) the expected log nearest-neighbor distance

is a monotonically decreasing function of the number of samples; and (2) the relative dimensionality

curves for r × r white noise, spectrum-equalized noise, and natural scene patches must eventually

converge to the intrinsic dimensionality of k = r2. The first constraint specifies that the slopes

of the proximity distribution functions must always be less than zero and thus the corresponding

relative dimensionality curves must always be greater than zero. The second constraint specifies
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that for 8 × 8 patches, the relative dimensionality curves will eventually converge to a value of 64.

Thus, we extrapolate the proximity distribution data by extrapolating the corresponding relative

dimensionality data.

Figure 12 depicts the relative dimensionality curves for 8 × 8 patches of Gaussian white noise,

spectrum-equalized noise, and natural scenes. The relative dimensionality curves for spectrum-

equalized noise and natural scenes are replotted from Figure 9(b). The relative dimensional-

ity curve for Gaussian white noise (indicated by the black line in Figure 12) was computed

via Equation (10) for N ∈ [1, 250], and the remainder of the curve was fitted with RD(N) =

−(log N + b0)
2/(a2[log N ]2 +2a2b0 log N +a1b0−a0), where the parameters a2 = −1/64, a1 = 4.13,

a0 = 65.05, and b0 = 13.02 were computed via the Nelder-Mead simplex method.43 Note that in

the limit of large N , RD(N) = 1/a2 = 64. The corresponding entropy estimate for Gaussian white

noise obtained by using Equation (8) with k = 64 and N = 2300 yields a value of 449 bits (7.0

bits/pixel); the actual entropy computed via Equation (9) is 462 bits (7.2 bits/pixel).

In the following sections, we assume three different forms of the relative dimensionality curves of

spectrum-equalized noise and natural scenes—Form A, Form B, and Form C—which give rise to

three corresponding techniques for extrapolating the proximity distribution data and thereby give

rise to three entropy estimates. These extrapolated entropy estimates are denoted as XEntropy A,

XEntropy B, and XEntropy C, respectively. We describe each of these extrapolation techniques so

as to make explicit how different assumptions can lead to different estimates of entropy. We believe

our best assumptions are built into XEntropy C; however, we are also confident that future work

can improve on these estimates. Nevertheless, we believe these are the best estimates of entropy

available.
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4.A. XEntropy A

Form A of the relative dimensionality curves for spectrum-equalized noise and natural scenes as-

sumes that the curves follow a straight line (in log N) until they reach a dimensionality of 64 and

thereafter remain at that value. Figure 13(a) depicts the resulting relative dimensionality curves

under this assumption. The linear portion of each extrapolated relative dimensionality curve was

obtained by fitting the last five measured data points with a first-degree polynomial in log N :

RD(N) = 1.13 log N + 6.45 for spectrum-equalized noise, RD(N) = 0.94 log N − 0.19 for natural

scenes. The resulting extrapolated proximity distribution functions are shown in Figure 13(b).

Figure 14 shows the entropy estimate for Gaussian white noise (449 bits; 7.0 bits/pixel) and

extrapolated entropy estimates (XEntropy A) for spectrum-equalized noise and natural scenes

computed by using Equation (8) with k = 64 and N = 2300. For spectrum-equalized noise, the

XEntropy A is 344 bits (5.4 bits/pixel); the actual entropy is 328 bits (5.1 bits/pixel; computed via

Equation (9); see Ref. 42). For the sample of natural scenes used here, the XEntropy A is 212 bits

(3.3 bits/pixel).

4.B. XEntropy B

Form B of the relative dimensionality curves for spectrum-equalized noise and natural scenes as-

sumes that the curves follow a straight line (in log N) until they intersect with the relative dimen-

sionality curve for Gaussian white noise, whereupon all subsequent relative dimensionality values

are equivalent to the relative dimensionality values for Gaussian white noise. Figure 15(a) depicts

the resulting relative dimensionality curves under this assumption. The linear portion of each ex-

trapolated relative dimensionality curve was obtained as described in Section 4.A. The resulting

extrapolated proximity distribution functions are shown in Figure 15(b).

Figure 16 shows the entropy estimate for Gaussian white noise replotted from Figure 14 (449 bits;
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7.0 bits/pixel) and extrapolated entropy estimates (XEntropy B) for spectrum-equalized noise and

natural scenes computed by using Equation (8) with k = 64 and N = 2300. For spectrum-equalized

noise, the XEntropy B is 337 bits (5.3 bits/pixel); the actual entropy is 328 bits (5.1 bits/pixel;

computed via Equation (9)). For the sample of natural scenes used here, the XEntropy B is 206

bits (3.2 bits/pixel).

4.C. XEntropy C

Form C of the relative dimensionality curves for spectrum-equalized noise and natural scenes as-

sumes that the curves are described by the same functional form as the relative dimensionality

curve for Gaussian white noise, RD(N) = −(log N + b0)
2/(a2[log N ]2 + 2a2b0 log N + a1b0 − a0),

where a2 = −1/64, a1 = 4.129, a0 = 65.05, and the parameter b0 was adjusted to fit the measured

data. For spectrum-equalized noise b0 = 10.88 and for natural scenes b0 = 8.10 as determined by

the Nelder-Mead simplex method. Figure 17(a) depicts the resulting relative dimensionality curves

under this assumption. The resulting extrapolated proximity distribution functions are shown in

Figure 17(b).

Figure 18 shows the entropy estimate for Gaussian white noise replotted from Figure 14 (449 bits;

7.0 bits/pixel) and extrapolated entropy estimates (XEntropy C) for spectrum-equalized noise and

natural scenes computed by using Equation (8) with k = 64 and N = 2300. For spectrum-equalized

noise, the XEntropy C is 324 bits (5.1 bits/pixel), which is very close to the actual entropy of 328

bits (5.1 bits/pixel; computed via Equation (9)). For the sample of natural scenes used here, the

XEntropy C is 184 bits (2.9 bits/pixel).

In summary, among the three extrapolation techniques examined here, we believe that XEntropy

C provides the best estimate of entropy. Clearly, a goal of future research is to improve on both the

accuracy and robustness of these estimates. Furthermore, the XEntropy C estimate of 184 bits (2.9
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bits/pixel) is dependent on the particular sample of images used here. A more extensive sample of

natural scenes will certainly give rise to a better estimate of the entropy of natural scenes.

5. OTHER PATCH SIZES

In the previous experiments, patches of size 8 × 8 pixels were used. To investigate the effects of

patch size on entropy, we measured proximity distribution functions for 16×16 patches of Gaussian

white noise and natural scenes. Indeed, if the 8× 8 subpatches of a 16× 16 patch are independent,

then one would expect the entropy of the 16× 16 patches to be four times greater than that of the

8 × 8 patches. Furthermore, if the subpatches are independent, then we would expect the relative

dimensionality for a given proximity to increase by a factor of 4 by doubling the size of the patch

(e.g., the RD of 16× 16 patches at a given proximity would be 4 times the RD of 8× 8 patches at

that same proximity).

Figure 19(a) depicts the proximity distribution functions for patches of size 8 × 8 (black circles)

and 16 × 16 (white circles) selected from Gaussian white noise images created with σ = 36 (see

Section 2). The proximity distribution function for the 8 × 8 patches has been offset such that

the average log nearest-neighbor distance is 5.0 at N = 1; accordingly, the proximity distribution

function for the 16×16 patches has been offset to maintain the relative vertical displacement between

curves. Also shown in Figure 19(a) (as solid lines) are the predicted proximity distribution functions

which would result if the 8×8 subpatches of the 16×16 patches were statistically independent (i.e.,

requiring 4 times as many samples to achieve the same nearest-neighbor distances as those obtained

using the 8 × 8 patches). Notice that the actual proximity distribution function for the 16 × 16

Gaussian white noise patches is very much in agreement with the predicted proximity distribution

function, which confirms that the Gaussian white noise subpatches are indeed independent.

Figure 19(b) depicts the proximity distribution functions for patches of size 8× 8 (black circles)
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and 16×16 (white circles) selected from the natural scenes (see Section 2). The proximity distribu-

tion function for the 8×8 patches has been offset such that the average log nearest-neighbor distance

is 5.0 at N = 1, and the proximity distribution function for the 16× 16 patches have been offset to

maintain the relative vertical displacement between curves. Figure 19(b) also shows (as solid lines)

the predicted proximity distribution functions which would result if the 8 × 8 subpatches were

independent. Whereas in the Gaussian noise condition, the actual proximity distribution function

for the 16 × 16 patches was similar to the corresponding proximity distribution function predicted

assuming independence, here we see that the actual proximity distribution function is substan-

tially lower than the proximity distribution function predicted assuming independence. These data

demonstrate that the 8× 8 subpatches of the 16× 16 patches are not independent; rather, natural

scenes demonstrate a marked statistical dependency across space.

Figures 20(a) and 20(b) show corresponding data measured for mean- and contrast-normalized

patches (see Section 3.B) of size 8 × 8 and 16 × 16 pixels. Observe in Figure 20(a), which depicts

the results for Gaussian white noise patches, that the 8 × 8 high-contrast subpatches are nearly

independent; i.e., the actual proximity distribution function for the high-contrast 16 × 16 patches

(white circles) is similar to the proximity distribution functions predicted assuming independence

(solid lines). However, as shown in Figure 20(b), the data obtained for high-contrast natural-scenes

patches gives rise to a proximity distribution function which are markedly lower than the proximity

distribution function predicted assuming independence. These data suggest that the high-contrast

patterns found in natural scenes demonstrate a statistical dependency across space.

Unfortunately, extrapolation of the proximity distribution for the 16 × 16 patches is more prob-

lematic than for the 8 × 8 patches because the 16 × 16 relative dimensionality curve is very far

from converging on the intrinsic dimensionality of 256. However, if we assume that for numbers of

samples beyond that measured (> 218), the remaining portion of the proximity distribution for the
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16× 16 patches continues as if the 8× 8 subpatches were independent, then we obtain an estimate

of 567 bits (2.2 bits/pixel) for the entropy of the 16 × 16 natural-scene patches. Clearly, obtaining

sufficient numbers of samples to extrapolate the proximity distributions for larger patches proves

quite difficult. Although we expect further reductions in the entropy rate (bits/pixel) for larger

patches, the ultimate entropy one obtains with larger patches (e.g., 256 × 256) will be a function

of both the image content and the noise in the signal.

6. DISCUSSION

In this paper, we have used proximity distributions to investigate the entropy and dimensionality

of natural scenes. For the sample of natural scenes used here, we found the entropy of 3×3 patches

to be 35 bits (3.9 bits/pixel) and the entropy of 8 × 8 patches to be 184 bits (2.9 bits/pixel; based

on our XEntropy C estimate; see Section 4.C). Furthermore, given < 218 samples, the space of 3×3

and 8×8 natural scenes appears lower dimensional than both the space of 3×3 and 8×8 Gaussian

white noise, and the space of 3 × 3 and 8 × 8 spectrum-equalized noise.

In general, the technique employed here requires far few samples than that required for directly

estimating the probability distribution and thereby estimating entropy. For example, for 3 × 3

patches which follow a uniform distribution, at least 272 samples would be required to measure the

probability distribution and thereby measure entropy. However, as the dimensionality grows, and

even for 8× 8 patches, nearest-neighbor-based techniques too require a prohibitively large number

of samples. Although we have proposed three methods of extrapolation, verifying and improving

the accuracy of the extrapolations is certainly an area which requires further investigation.

It is generally accepted that the intensity values of images drawn from the natural environment

possess a degree of statistical redundancy. Several factors contribute to this redundancy: (1) Natural

scenes possess a power spectrum which typically demonstrates a 1/fα profile, where f denote
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spatial frequency, α ∈ [1.4, 2.8] (an amplitude spectrum of 1/f
α
2 ); the dominance of low spatial

frequencies in natural scenes implies slow spatial changes in intensity, and thus neighboring intensity

values are spatially correlated. (2) The local frequency content of natural scenes typically follows a

non-Gaussian distribution; rather, marginal probability distributions of discrete cosine transform

and discrete wavelet transform coefficients are typically well-modeled by using a leptokurtotic

generalized Gaussian density. (3) The local mean luminance and local luminance contrast in natural

scenes follow a non-Gaussian distribution; many of the patches drawn from natural scenes are devoid

of significant contrast.

Although these forms of redundancy have been well studied, there remains the question of how

much of the redundancy of images is attributable to each form. Accordingly, in addition to natural

scenes, we have measured the entropy of patches of Gaussian white noise and patches of spectrum-

equalized noise; and we have measured the entropy of mean- and contrast-normalized versions of all

image types. This approach of normalizing the images according to different parameters provides

insight into how these different forms of redundancy contribute to the entropy.44

6.A. Effects of Spatial Correlations

Much of the redundancy in natural scenes is commonly attributed to the power (amplitude) spec-

trum which typically demonstrates a 1/fα profile (1/f
α
2 profile), where f denote spatial frequency,

α ∈ [1.4, 2.8]. Clearly, data which are spatially correlated are also redundant. However, the reverse is

not true: Data which are redundant need not be correlated; rather, the redundancies can arise from

other forms of statistical dependence. Indeed, several investigators have shown that the statistical

dependencies in natural scenes arise from more than just the spatial correlations.1,7, 4, 5, 8

Here, we have measured the entropy of 3× 3 patches of Gaussian noise, 3× 3 patches of natural

scenes, and 3 × 3 patches of Gaussian noise with a power spectrum equivalent to that of natural

33



scenes (spectrum-equalized noise). In addition, we have provided an extrapolated estimate of en-

tropy (XEntropy) of 8 × 8 patches of these three image types. For the spectrum-equalized noise,

the real and imaginary components of each DFT coefficient of the spectrum-equalized noise were

drawn from a Gaussian distribution with standard deviation equivalent to the standard deviation

measured for the corresponding Fourier components of the natural scenes. Thus, the spectrum-

equalized noise and natural scenes possess the same power spectrum, although the distributions of

local mean, contrast, and frequency remained unique for each image type.

For 3×3 patches of Gaussian white noise, the entropy was estimated to be 63 bits (7.2 bits/pixel;

see Section 2.D); this entropy is equivalent to that computed directly via Equation (9). For 3 × 3

patches of spectrum-equalized noise, the entropy was estimated to be 49 bits (5.5 bits/pixel), a value

which is also equivalent to the entropy computed directly via Equation (9). For 3 × 3 patches of

the natural scenes used here, the entropy was estimated to be 35 bits (3.9 bits/pixel). These results

reveal that for the sample of natural scenes used here, 3×3 natural scenes have approximately 71%

the entropy of 3 × 3 images with the same power spectrum as 3 × 3 natural scenes.

For 8× 8 patches of Gaussian white noise, our XEntropy C estimate was 449 bits (7.0 bits/pixel;

see Section 4.C); the actual entropy computed via Equation (9) was 462 bits (7.2 bits/pixel). The

XEntropy C estimate for 8 × 8 patches of spectrum-equalized noise was 324 bits (5.1 bits/pixel),

which is very close to the actual entropy of 328 bits (5.1 bits/pixel) computed via Equation (9).

The XEntropy C estimate for 8×8 patches of natural scenes was 184 bits (2.9 bits/pixel). Although

there are certainly limitations to these extrapolated measures, these results suggest that for the

sample of natural scenes used here, 8 × 8 natural scenes have approximately 57% the entropy of

8 × 8 images with the same power spectrum as 8 × 8 natural scenes.
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6.B. Effects of Local Mean and Contrast

In addition to the characteristic power spectrum, natural scenes also exhibit non-Gaussian distribu-

tions of local mean luminance and local luminance contrast; rather, patches drawn from natural

scenes are often devoid of significant contrast. These factors also contribute to the statistical re-

dundancy (reduced entropy) of natural scenes. Accordingly, in Section 3.B, we also examined the

nearest-neighbor-distance behavior of mean- and contrast-normalized 8 × 8 patches to investigate

the entropy of the underlying patterns found in natural scenes without regard to the absolute

luminance or RMS contrast.

By normalizing for RMS contrast, the absolute entropy depends on the contrast (variance) to

which the data are normalized. Accordingly, here we report entropy estimates relative the entropy

of the mean- and contrast-normalized Gaussian white noise. By applying the XEntropy C extrapo-

lation to the mean- and contrast-normalized proximity distribution functions, we find that for the

sample of natural scenes used here, 8×8 high-contrast patterns of natural scenes have approximately

57% the entropy of 8 × 8 high-contrast patterns of Gaussian white noise; and 8 × 8 high-contrast

patterns with the same power spectrum as that of 8×8 natural scenes have approximately 87% the

entropy of 8 × 8 high-contrast patterns of Gaussian white noise. Furthermore, 8 × 8 high-contrast

patterns of natural scenes have approximately 77% the entropy of 8×8 high-contrast patterns with

the same power spectrum as that of natural scenes.

6.C. Relative Dimensionality

As mentioned in Section 1, there exists a wide body of research geared toward measuring intrinsic

dimensionality27,28, 29, 30, 31, 32, 33 (see Ref. 34 for a review). Here, we have emphasized the relative

dimensionality of the data as a function of the sampling density. Our main assumption is that,

given a sufficiently large number of samples, the relative dimensionality converges on the intrinsic
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dimensionality. We have measured the relative dimensionality of 3×3 and 8×8 patches of Gaussian

white noise, spectrum-equalized noise, and natural scenes; and the relative dimensionality of 8× 8

patches of 1/f and 1/f2 noise.

For 3 × 3 patches (Section 2.D), the relative dimensionality curves for Gaussian white noise,

spectrum-equalized noise, and natural scenes all converge on the same (intrinsic) dimensionality of 9,

but the curves converge at different rates. Specifically, for samples sizes < 217, natural scenes appear

lower dimensional than both Gaussian white noise and spectrum-equalized noise (at corresponding

sample sizes), and spectrum-equalized noise appears lower dimensional than Gaussian white noise

(at corresponding sample sizes).

For 8 × 8 patches (Section 3.A), our extrapolations are derived from the assumption that the

relative dimensionality curves converge on a value of 64 given a sufficiently large number of sam-

ples. For samples sizes ≤ 218, 1/f2 noise appears to be lower dimensional than natural scenes,

natural scenes appear lower dimensional than spectrum-equalized noise, spectrum-equalized noise

appears lower dimensional than 1/f noise, and 1/f noise shows lower dimensionality than Gaussian

white noise. These ranks are approximately maintained for mean- and contrast-normalized 8 × 8

patches (Section 3.B) with the exception that given N ≥ 210 samples, natural scenes appear lower

dimensional than 1/f2 noise.

In contrast to dimensionality-reduction techniques such as Principal Components Analysis or

more recently developed non-linear techniques,32,33 the relative dimensionality does not specify a

particular technique for representing the data given a fixed number of dimensions (e.g., unrolling

the Swiss roll), nor does it provide information regarding what the dimensions represent. Instead,

the relative dimensionality of a data set specifies only the dimensionality the data appear to have

given a limited number of samples. Clearly, this relative dimensionality depends on the technique

used to explore the data space; e.g., relative dimensionality is linked to the sampling method and
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to the metric used to measure the distance between samples. Here, we have measured relative

dimensionality by using what is arguably one of the simplest approaches: measuring the average

(log) distance to the single nearest neighbor for samples drawn randomly from the space. Other

techniques, such as using the k nearest neighbors (k > 1) or using a more uniform sampling

technique, may very well lead to different ADs.

However, regardless of the approach used to measure relative dimensionality, the primary utility

of the relative dimensionality curve is its ability to specify the maximum number of samples required

to reconstruct the geometry of the data space. Namely, when the relative dimensionality curve of

a data set has converged to the intrinsic dimensionality of the data, there are a sufficient number

of samples to uniquely specify the space. Performing the actual reconstruction of the space from

those samples is a task suitable for other algorithms.32,33

6.D. Other Estimates of the Entropy of Natural Scenes

Previous researchers have applied different approaches to investigate the entropy of natural images.

Parks45 employed a variant of Shannon’s classical guessing game in which human subjects were

used as optimal predictors to estimate the entropy of half-tone (binary) images; the entropy of

these binary images was estimated to be approximately 0.3 bits/pixel. Tzannes et al.46 used a

similar technique to estimate the entropy of 3-bit images; the entropy in Ref. 46 was estimated

to be 1.6 bits/pixel. These psychophysical-based approaches were later extended by Kersten3 to

estimate the entropy of 4-bit images; Kersten estimated lower and upper bounds on entropy of

approximately 0.8 and 1.5 bits/pixel, respectively.

Other, computational approaches have also been used to investigate the information content

in natural scenes. Via a Voronoi tessellation of the space of zero-mean contrast-normalized 3 × 3

patches, Lee et al.47 have reported that both natural scenes and range images occupy only a small
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fraction of the surface area of the 7-sphere. More recently, Costa and Hero48 have developed a

measure of Renyi entropy which was used to estimate the entropy of images from the Yale Face

Database.

Here, we have used a nearest-neighbor-based technique and an extrapolation (XEntropy C) to

estimate an entropy of 2.9 bits/pixel for 8 × 8 patches of natural scenes. Although differences in

patch-size and luminance resolution make it difficult to perform a direct comparison of our results

with previous estimates, maximum quality JPEG compression (which is a block-based strategy that

operates on 8 × 8 blocks) provides an average bit-rate of 4.1 bits/pixel for the natural scenes used

in this study, a value which is 41% greater than our estimate of entropy.

6.E. Other Applications

The application of nearest-neighbor-based techniques to estimating entropy and dimensionality is

not limited to natural scenes. Victor19 has applied the technique to estimate the entropy of neural

spike trains. Kraskov et al. has applied a related technique to estimate the mutual information in

both gene expression data and ECG signals. Kybic39 has proposed a related estimate of mutual

information for image registration applications.

We are currently developing extensions of the techniques presented here to investigate the amount

of additional information provided by color images (in comparison to luminance-only images); the

amount of information provided by the phase spectrum, including measurements of the mutual in-

formation between the power and phase spectrum of natural scenes; and the amount of information

in natural paintings. In addition, we are investigating the application of the techniques presented

here to other types of signals, including natural sounds and video.

Nearest-neighbor-based techniques also have a long history in the field of pattern classification

(see Refs. 49,50). Indeed, the entropy of a data set is clearly related to the difficulty of classifying
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data from the set. We believe the use of proximity distributions for natural scenes will prove

useful for understanding scene classification and can provide insights into the differences between

two images classes. We are currently investigating the use proximity distributions for classification

purposes.

In theory, the techniques described here can be applied to a wide range of data types. However,

it must be stressed that the techniques rely on the assumption that given a sufficient number of

samples, the proximity distribution converges to a linear function of the (log) number of samples;

i.e., the quantity −d log2(N)/dE {log2 D∗
N} is equivalent to the intrinsic dimensionality of the data

for sufficiently large N . Clearly, there exist forms of data for which this assumption does not hold

or for which the notion of distance is difficult to quantify (e.g., language), and thus a goal of future

research might involve modifications of nearest-neighbor-based techniques and/or the development

of proper distance metrics for these types of data.

7. CONCLUSIONS

This paper presented the results of three experiments performed to investigate the entropy and

dimensionality of natural scenes. Nearest-neighbor distances were measured for a large collection

of samples drawn from various types of images, and the resulting proximity distributions were used

to examine the entropies and relative dimensionalities of the image-types.

Our current results indicate that 8 × 8 natural-scene patches have less than half the entropy of

8 × 8 Gaussian white noise patches. This reduction in entropy cannot be attributed solely to the

power spectrum, nor can it be attributed to the prevalence of low-contrast patches. Furthermore,

the ratio of entropy to patch size decreases with increasing size, suggesting that natural scenes

demonstrate a statistical dependency across space. In addition, given N = 218 samples, 8 × 8

natural-scene patches exhibit a relative dimensionality which is substantially less than the relative
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dimensionality of 8 × 8 Gaussian white noise patches.

The techniques presented here require far fewer samples than that required to estimate the en-

tropy by first estimating the full probability distribution; however, the presented techniques still

possess several limitations. In particular, for the images tested here, even 3 × 3 patches required

roughly 217 samples to obtain accurate estimates of entropy. Although 217 samples is not com-

putationally prohibitive, often one does not have access to this many samples. Furthermore, for

8× 8 patches, extrapolations of the data were required; these extrapolations relied on the fact that

the relative dimensionality curves eventually converged on the intrinsic dimensionality of the data,

and therefore the extrapolations require knowledge of this intrinsic dimensionality. We believe that

future research in this area can lead to improved methods of extrapolation and consequently lead

to improved estimates of entropy.
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List of Figure Captions

Fig. 1. Diagram of the procedure used in the experiments: Images from a given class were

randomly divided into two groups: Group T containing the to-be-matched “target” samples,

and Group N containing the samples from the population. Patches of size r × r pixels were

then extracted from the images in a non-overlapping fashion. For each target patch in Group

T , an exhaustive, brute-force search procedure was performed to find the patch in Group N

with the minimum Euclidean distance to the target patch (minimum L2-norm of the difference).

The average log nearest-neighbor distance was then estimated by computing the sample mean of

minimum Euclidean distances over all target patches; this process was then repeated for increasing

numbers of samples to compute the average log nearest-neighbor distance as a function of the

number of samples (the proximity distribution). See Figures 5, 6, 9, 10, later in this paper for

examples of proximity distribution functions.

Fig. 2. (a) Swiss roll data to which Gaussian white noise has been added (here, showing

3200 samples). (b) Eight random samples of the noisy Swiss roll data; here, there are too few

samples to discern any particular geometry (RD = 3). (c) 80 random samples of the noisy Swiss

roll data; here, there are enough samples to begin to see a two-dimensional Swiss-roll manifold

(RD = 2). (d) 800 random samples of the noisy Swiss roll data; here, there are enough samples to

see that the roll actually has a thickness (RD = 3).

Fig. 3. (a) Unrolled version of the noisy Swiss roll data in Figure 2. (b) Eight random sam-

ples of the unrolled data; here, there are too few samples to clearly expose the third dimension

(RD = 2). (c) 80 random samples of the unrolled data; here, there are still too few samples to

clearly expose the third dimension (RD = 2). (d) 800 random samples of the unrolled data; here,
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there are enough samples to see that the plane has a thickness (RD = 3).

Fig. 4. Example stimuli used in the experiments (R × R = 1024 × 1024): (a) Gaussian white

noise; (b) 1/f noise; (c) 1/f2 noise; (d) spectrum-equalized noise with r × r = 8 × 8; (e) natural

scene cropped from image imk04103 of the van Hateren database. Note that to promote visibility,

the intensities of these images have been adjusted, and (d) depicts only the top-left 256×256 section.

Fig. 5. Proximity distribution functions for iid Gaussian data computed via Equation (10)

(solid lines) and measured experimentally (circles). In each graph, the horizontal axis denotes

the number of samples N ; the vertical axis denotes the corresponding E{log2 D∗
N} computed via

Equation (10). (a) proximity distribution functions for a fixed dimensionality (k = 64) and various

values of standard deviation σ; (b) proximity distribution functions for a fixed standard deviation

(σ = 0.77) and various values of dimensionality k.

Fig. 6. Proximity distribution functions for 3 × 3 patches of Gaussian white noise, spectrum-

equalized noise, and natural scenes. The horizontal axis denotes the number of samples N ; the

vertical axis denotes the corresponding E{log2 D∗
N} estimated via a sample mean over all target

patches. Black circles: Gaussian white noise; light-gray circles: spectrum-equalized noise; stars:

natural scenes. The solid black lines represent a slope of −1/9th; notice that all three curves

eventually converge on this slope.

Fig. 7. Relative dimensionality curves for 3 × 3 patches of Gaussian white noise, spectrum-

equalized noise, and natural scenes. The horizontal axis denotes the number of samples N ; the

vertical axis denotes the corresponding relative dimensionality. Black circles: Gaussian white noise;
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light-gray circles: spectrum-equalized noise; stars: natural scenes. The solid gray line denotes the

intrinsic dimensionality of k = 9 for all three data sets (the natural scenes possess an intrinsic

dimensionality of k = 9 due to photon noise).

Fig. 8. Entropy estimates for 3 × 3 patches of Gaussian white noise, spectrum-equalized

noise, and natural scenes. The horizontal axis denotes the number of samples N ; the vertical axis

denotes the entropy computed via Equation (8) using the corresponding value of N . Black circles:

Gaussian white noise (7.0 bits/pixel); light-gray circles: spectrum-equalized noise (5.5 bits/pixel);

stars: natural scenes (3.9 bits/pixel). The solid gray lines indicate the actual entropies of Gaussian

white noise and spectrum-equalized noise (7.0 and 5.5 bits/pixel, respectively) as computed via

Equation (9); the dashed line denotes the entropy estimate of 3.9 bits/pixel for natural scenes.

Fig. 9. Proximity distribution and relative dimensionality curves for 8 × 8 patches. In both

graphs, the horizontal axis in denotes the number of samples N . The vertical axis in (a) denotes

the corresponding E{log2 D∗
N} estimated via a sample mean over all target patches; the vertical axis

in (b) denotes the corresponding relative dimensionality. Black circles: Gaussian white noise; gray

circles: 1/f noise; light-gray circles: spectrum-equalized noise; white circles: 1/f2 noise; stars: nat-

ural scenes. The solid gray line in (b) denotes the intrinsic dimensionality of k = 64 for all data sets.

Fig. 10. Proximity distribution and relative dimensionality curves for mean- and contrast-

normalized 8 × 8 patches. The horizontal axis denotes the number of samples N . The vertical axis

in (a) denotes the corresponding E{log2 D∗
N} estimated via a sample mean over all target patches;

the vertical axis in (b) denotes the corresponding relative dimensionality. Black circles: Gaussian

white noise; gray circles: 1/f noise; light-gray circles: spectrum-equalized noise; white circles:
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1/f2 noise; stars: natural scenes. The solid gray line in (b) denotes the intrinsic dimensionality of

k = 62 for all data sets.

Fig. 11. Proximity distribution and relative dimensionality curves for mean- and contrast-

normalized 8 × 8 patches of whitened natural scenes, and of Gaussian white noise, spectrum-

equalized noise, and natural scenes (replotted from Figure 10). The horizontal axis denotes the

number of samples N ; the vertical axis in (a) denotes the corresponding E{log2 D∗
N} estimated

via a sample mean over all target patches, and the vertical axis in (b) denotes the corresponding

relative dimensionality. Black circles: Gaussian white noise; light-gray circles: 1/f noise; black

stars: natural scenes; white stars: whitened natural scenes. The solid gray line in (b) denotes the

intrinsic dimensionality of k = 62 for all data sets.

Fig. 12. Relative dimensionality curves for 8 × 8 Gaussian white noise (black line), spectrum-

equalized noise (light-gray circles), and natural scenes (stars). The relative dimensionality

curve for the Gaussian white noise was computed at values of N ∈ [1, 250] via Equa-

tion (10), and the remainder of the curve was fitted with relativedimensionality(N) =

−(log N + b0)
2/(a2[log N ]2 + 2a2b0 log N + a1b0 − a0), where a2 = −1/64, a1 = 4.13, a0 = 65.05,

and b0 = 13.02 were computed via the Nelder-Mead simplex method. The data for the spectrum-

equalized noise and natural scenes are replotted from Figure 9(b). The solid gray line denotes the

intrinsic dimensionality of k = 64 for all data sets.

Fig. 13. Relative dimensionality curves (a) and proximity distribution functions (b) for 8 × 8

Gaussian white noise (black line), and extrapolated relative dimensionality (a) and proximity

distribution (b) curves for spectrum-equalized noise (gray circles) and natural scenes (stars) by
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assuming Form A of the relative dimensionality curves. Under Form A, the relative dimensionality

curves follow a straight line (in log N) until they hit the dimensionality value of 64.

Fig. 14. Entropy estimate for Gaussian white noise and extrapolated entropy estimates (XEn

curves) assuming Form A of the relative dimensionality curves (XEntropy A) for spectrum-equalized

noise and natural scenes. The entropy estimates computed by using Equation (8) with k = 64 and

N = 2300 are 5.4 bits/pixel and 3.3 bits/pixel for spectrum-equalized noise and natural scenes, re-

spectively; the true entropy of spectrum-equalized noise computed via Equation (9) is 5.1 bits/pixel.

Fig. 15. Relative dimensionality curves (a) and proximity distribution functions (b) for 8 × 8

Gaussian white noise (black line), and extrapolated relative dimensionality (a) and proximity

distribution (b) curves for spectrum-equalized noise (gray circles) and natural scenes (stars) by

assuming Form B of the relative dimensionality curves. Under Form B, the relative dimensionality

curves follow a straight line until they intersect with the relative dimensionality curve for Gaussian

white noise, whereupon all subsequent relative dimensionality values are equivalent to the relative

dimensionality values for Gaussian white noise.

Fig. 16. Entropy estimate for Gaussian white noise and extrapolated entropy estimates (XEn

curves) assuming Form B of the relative dimensionality curves (XEntropy B) for spectrum-equalized

noise and natural scenes. The entropy estimates computed by using Equation (8) with k = 64 and

N = 2300 are 5.3 bits/pixel and 3.2 bits/pixel for spectrum-equalized noise and natural scenes, re-

spectively; the true entropy of spectrum-equalized noise computed via Equation (9) is 5.1 bits/pixel.

Fig. 17. Relative dimensionality curves (a) and proximity distribution functions (b) for 8 × 8
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Gaussian white noise (black line), and extrapolated relative dimensionality (a) and proximity

distribution (b) curves for spectrum-equalized noise (gray circles) and natural scenes (stars) by

assuming Form B of the relative dimensionality curves. Under Form C, the relative dimensionality

curves assume the same functional form as the relative dimensionality curve for Gaussian white

noise, RD(N) = −(log N + b0)
2/(a2[log N ]2 + 2a2b0 log N + a1b0 − a0), where a2 = −1/64,

a1 = 4.13, a0 = 65.05, and the parameter b0 was adjusted to fit the measured data (b0 = 10.88 for

spectrum-equalized noise, b0 = 8.10 for natural scenes).

Fig. 18. Entropy estimate for Gaussian white noise and extrapolated entropy estimates (XEn

curves) assuming Form C of the relative dimensionality curves (XEntropy C) for spectrum-equalized

noise and natural scenes. The entropy estimates computed by using Equation (8) with k = 64 and

N = 2300 are 5.1 bits/pixel and 2.9 bits/pixel for spectrum-equalized noise and natural scenes, re-

spectively; the true entropy of spectrum-equalized noise computed via Equation (9) is 5.1 bits/pixel.

Fig. 19. Proximity distribution functions for patches of size 8× 8 (black circles) and 16× 16 (white

circles). (a) Data for Gaussian white noise; (b) data for natural scenes. The solid black curves in

each graph denote the proximity distribution functions that would result if the 8×8 subpatches were

statistically independent (thus requiring 4 times the entropy of 8× 8 patches to describe a 16× 16

patch. Note that the predicted curves have been vertically offset to match their corresponding data.

Fig. 20. Proximity distribution functions for patches of size 8 × 8 (black circles) and 16 × 16

(white circles) in which each patch was mean- and contrast-normalized as described in Section

3.B. (a) Data for Gaussian white noise; (b) data for natural scenes. The solid black curves in each

graph denote the proximity distribution functions that would result if the 8 × 8 subpatches were
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statistically independent (thus requiring 4 times the entropy of 8× 8 patches to describe a 16× 16

patch. Note that the predicted curves have been vertically offset to match their corresponding

data.
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GroupN Group T

r × r patches r × r patches

1. Create library of neighbor patches 2. Pick a target patch

t
T

Xn
N

X

2

min
Ln

nt
NT

XX

3. Calculate Euclidean distance between 
target and nearest neighbor as a 
function of number of neighbors

Fig. 1. Diagram of the procedure used in the experiments: Images from a given class

were randomly divided into two groups: Group T containing the to-be-matched

“target” samples, and Group N containing the samples from the population.

Patches of size r×r pixels were then extracted from the images in a non-overlapping

fashion. For each target patch in Group T , an exhaustive, brute-force search pro-

cedure was performed to find the patch in Group N with the minimum Euclidean

distance to the target patch (minimum L2-norm of the difference). The average log

nearest-neighbor distance was then estimated by computing the sample mean of min-

imum Euclidean distances over all target patches; this process was then repeated for

increasing numbers of samples to compute the average log nearest-neighbor distance

as a function of the number of samples (the proximity distribution). See Figures 5,

6, 9, 10, later in this paper for examples of proximity distribution functions.
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(a)  Noisy Swiss roll data (b) 8 samples (RD = 3)

(c) 80 samples (RD = 2) (d) 800 samples (RD = 3)

Fig. 2. (a) Swiss roll data to which Gaussian white noise has been added (here,

showing 3200 samples). (b) Eight random samples of the noisy Swiss roll data;

here, there are too few samples to discern any particular geometry (RD = 3). (c) 80

random samples of the noisy Swiss roll data; here, there are enough samples to begin

to see a two-dimensional Swiss-roll manifold (RD = 2). (d) 800 random samples of

the noisy Swiss roll data; here, there are enough samples to see that the roll actually

has a thickness (RD = 3).
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(a) Unrolled noisy Swiss roll data
(b) 8 samples (RD = 2)

(c) 80 samples (RD = 2) (d) 800 samples (RD = 3)

Fig. 3. (a) Unrolled version of the noisy Swiss roll data in Figure 2. (b) Eight random

samples of the unrolled data; here, there are too few samples to clearly expose the

third dimension (RD = 2). (c) 80 random samples of the unrolled data; here, there

are still too few samples to clearly expose the third dimension (RD = 2). (d) 800

random samples of the unrolled data; here, there are enough samples to see that the

plane has a thickness (RD = 3).
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(a) (b) (c)

(e)(d)

Fig. 4. Example stimuli used in the experiments (R × R = 1024 × 1024): (a)

Gaussian white noise; (b) 1/f noise; (c) 1/f2 noise; (d) spectrum-equalized noise

with r × r = 8 × 8; (e) natural scene cropped from image imk04103 of the van

Hateren database. Note that to promote visibility, the intensities of these images

have been adjusted, and (d) depicts only the top-left 256 × 256 section.
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Fig. 5. Proximity distribution functions for iid Gaussian data computed via Equa-

tion (10) (solid lines) and measured experimentally (circles). In each graph, the

horizontal axis denotes the number of samples N ; the vertical axis denotes the

corresponding E{log2 D∗
N} computed via Equation (10). (a) proximity distribution

functions for a fixed dimensionality (k = 64) and various values of standard deviation

σ; (b) proximity distribution functions for a fixed standard deviation (σ = 0.77) and

various values of dimensionality k.
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Fig. 6. Proximity distribution functions for 3 × 3 patches of Gaussian white noise,

spectrum-equalized noise, and natural scenes. The horizontal axis denotes the num-

ber of samples N ; the vertical axis denotes the corresponding E{log2 D∗
N} estimated

via a sample mean over all target patches. Black circles: Gaussian white noise; light-

gray circles: spectrum-equalized noise; stars: natural scenes. The solid black lines

represent a slope of −1/9th; notice that all three curves eventually converge on this

slope.
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Fig. 7. Relative dimensionality curves for 3 × 3 patches of Gaussian white noise,

spectrum-equalized noise, and natural scenes. The horizontal axis denotes the num-

ber of samples N ; the vertical axis denotes the corresponding relative dimensional-

ity. Black circles: Gaussian white noise; light-gray circles: spectrum-equalized noise;

stars: natural scenes. The solid gray line denotes the intrinsic dimensionality of

k = 9 for all three data sets (the natural scenes possess an intrinsic dimensionality

of k = 9 due to photon noise).
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Fig. 8. Entropy estimates for 3 × 3 patches of Gaussian white noise, spectrum-

equalized noise, and natural scenes. The horizontal axis denotes the number of

samples N ; the vertical axis denotes the entropy computed via Equation (8) using

the corresponding value of N . Black circles: Gaussian white noise (7.0 bits/pixel);

light-gray circles: spectrum-equalized noise (5.5 bits/pixel); stars: natural scenes (3.9

bits/pixel). The solid gray lines indicate the actual entropies of Gaussian white noise

and spectrum-equalized noise (7.0 and 5.5 bits/pixel, respectively) as computed via

Equation (9); the dashed line denotes the entropy estimate of 3.9 bits/pixel for

natural scenes.
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Fig. 9. Proximity distribution and relative dimensionality curves for 8×8 patches. In

both graphs, the horizontal axis in denotes the number of samples N . The vertical

axis in (a) denotes the corresponding E{log2 D∗
N} estimated via a sample mean

over all target patches; the vertical axis in (b) denotes the corresponding relative

dimensionality. Black circles: Gaussian white noise; gray circles: 1/f noise; light-gray

circles: spectrum-equalized noise; white circles: 1/f2 noise; stars: natural scenes.

The solid gray line in (b) denotes the intrinsic dimensionality of k = 64 for all data

sets.
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Fig. 10. Proximity distribution and relative dimensionality curves for mean- and

contrast-normalized 8×8 patches. The horizontal axis denotes the number of samples

N . The vertical axis in (a) denotes the corresponding E{log2 D∗
N} estimated via a

sample mean over all target patches; the vertical axis in (b) denotes the correspond-

ing relative dimensionality. Black circles: Gaussian white noise; gray circles: 1/f

noise; light-gray circles: spectrum-equalized noise; white circles: 1/f2 noise; stars:

natural scenes. The solid gray line in (b) denotes the intrinsic dimensionality of

k = 62 for all data sets.
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Fig. 11. Proximity distribution and relative dimensionality curves for mean- and

contrast-normalized 8×8 patches of whitened natural scenes, and of Gaussian white

noise, spectrum-equalized noise, and natural scenes (replotted from Figure 10). The

horizontal axis denotes the number of samples N ; the vertical axis in (a) denotes

the corresponding E{log2 D∗
N} estimated via a sample mean over all target patches,

and the vertical axis in (b) denotes the corresponding relative dimensionality. Black

circles: Gaussian white noise; light-gray circles: 1/f noise; black stars: natural scenes;

white stars: whitened natural scenes. The solid gray line in (b) denotes the intrinsic

dimensionality of k = 62 for all data sets.
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Fig. 12. Relative dimensionality curves for 8× 8 Gaussian white noise (black line),

spectrum-equalized noise (light-gray circles), and natural scenes (stars). The rela-

tive dimensionality curve for the Gaussian white noise was computed at values of

N ∈ [1, 250] via Equation (10), and the remainder of the curve was fitted with

relativedimensionality(N) = −(log N + b0)
2/(a2[log N ]2 +2a2b0 log N +a1b0−a0),

where a2 = −1/64, a1 = 4.13, a0 = 65.05, and b0 = 13.02 were computed via the

Nelder-Mead simplex method. The data for the spectrum-equalized noise and nat-

ural scenes are replotted from Figure 9(b). The solid gray line denotes the intrinsic

dimensionality of k = 64 for all data sets.
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Fig. 13. Relative dimensionality curves (a) and proximity distribution functions (b)

for 8×8 Gaussian white noise (black line), and extrapolated relative dimensionality

(a) and proximity distribution (b) curves for spectrum-equalized noise (gray circles)

and natural scenes (stars) by assuming Form A of the relative dimensionality curves.

Under Form A, the relative dimensionality curves follow a straight line (in log N)

until they hit the dimensionality value of 64.
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Fig. 14. Entropy estimate for Gaussian white noise and extrapolated entropy esti-

mates (XEn curves) assuming Form A of the relative dimensionality curves (XEn-

tropy A) for spectrum-equalized noise and natural scenes. The entropy estimates

computed by using Equation (8) with k = 64 and N = 2300 are 5.4 bits/pixel and

3.3 bits/pixel for spectrum-equalized noise and natural scenes, respectively; the true

entropy of spectrum-equalized noise computed via Equation (9) is 5.1 bits/pixel.
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Fig. 15. Relative dimensionality curves (a) and proximity distribution functions (b)

for 8×8 Gaussian white noise (black line), and extrapolated relative dimensionality

(a) and proximity distribution (b) curves for spectrum-equalized noise (gray circles)

and natural scenes (stars) by assuming Form B of the relative dimensionality curves.

Under Form B, the relative dimensionality curves follow a straight line until they

intersect with the relative dimensionality curve for Gaussian white noise, whereupon

all subsequent relative dimensionality values are equivalent to the relative dimen-

sionality values for Gaussian white noise.
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Fig. 16. Entropy estimate for Gaussian white noise and extrapolated entropy esti-

mates (XEn curves) assuming Form B of the relative dimensionality curves (XEn-

tropy B) for spectrum-equalized noise and natural scenes. The entropy estimates

computed by using Equation (8) with k = 64 and N = 2300 are 5.3 bits/pixel and

3.2 bits/pixel for spectrum-equalized noise and natural scenes, respectively; the true

entropy of spectrum-equalized noise computed via Equation (9) is 5.1 bits/pixel.
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Fig. 17. Relative dimensionality curves (a) and proximity distribution functions (b)

for 8×8 Gaussian white noise (black line), and extrapolated relative dimensionality

(a) and proximity distribution (b) curves for spectrum-equalized noise (gray circles)

and natural scenes (stars) by assuming Form B of the relative dimensionality curves.

Under Form C, the relative dimensionality curves assume the same functional form

as the relative dimensionality curve for Gaussian white noise, RD(N) = −(log N +

b0)
2/(a2[log N ]2 +2a2b0 log N +a1b0−a0), where a2 = −1/64, a1 = 4.13, a0 = 65.05,

and the parameter b0 was adjusted to fit the measured data (b0 = 10.88 for spectrum-

equalized noise, b0 = 8.10 for natural scenes).
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Fig. 18. Entropy estimate for Gaussian white noise and extrapolated entropy esti-

mates (XEn curves) assuming Form C of the relative dimensionality curves (XEn-

tropy C) for spectrum-equalized noise and natural scenes. The entropy estimates

computed by using Equation (8) with k = 64 and N = 2300 are 5.1 bits/pixel and

2.9 bits/pixel for spectrum-equalized noise and natural scenes, respectively; the true

entropy of spectrum-equalized noise computed via Equation (9) is 5.1 bits/pixel.
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Fig. 19. Proximity distribution functions for patches of size 8×8 (black circles) and

16×16 (white circles). (a) Data for Gaussian white noise; (b) data for natural scenes.

The solid black curves in each graph denote the proximity distribution functions that

would result if the 8 × 8 subpatches were statistically independent (thus requiring

4 times the entropy of 8 × 8 patches to describe a 16 × 16 patch. Note that the

predicted curves have been vertically offset to match their corresponding data.
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Fig. 20. Proximity distribution functions for patches of size 8 × 8 (black circles)

and 16× 16 (white circles) in which each patch was mean- and contrast-normalized

as described in Section 3.B. (a) Data for Gaussian white noise; (b) data for natural

scenes. The solid black curves in each graph denote the proximity distribution func-

tions that would result if the 8 × 8 subpatches were statistically independent (thus

requiring 4 times the entropy of 8×8 patches to describe a 16×16 patch. Note that

the predicted curves have been vertically offset to match their corresponding data.
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