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Visual search experiments have usually involved the detection of a salient target in the presence of distracters against a
blank background. In such high signal-to-noise scenarios, observers have been shown to use visual cues such as color,
size, and shape of the target to program their saccades during visual search. The degree to which these features affect
search performance is usually measured using reaction times and detection accuracy. We asked whether human observers
are able to use target features to succeed in visual search tasks in stimuli with very low signal-to-noise ratios. Using the
classification image analysis technique, we investigated whether observers used structural cues to direct their fixations as
they searched for simple geometric targets embedded at very low signal-to-noise ratios in noise stimuli that had the spectral
characteristics of natural images. By analyzing properties of the noise stimulus at observers’ fixations, we were able to
reveal idiosyncratic, target-dependent features used by observers in our visual search task. We demonstrate that even in
very noisy displays, observers do not search randomly, but in many cases they deploy their fixations to regions in the
stimulus that resemble some aspect of the target in their local image features.
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Introduction

Visual search is a common yet important task that plays a
significant role in the survival of a species. Tasks such as
locating prey or ripe fruit are some examples of real-world
visual search. Despite the seemingly complex mechanisms
underlying search, humans excel at search tasks. One par-
ticular aspect of the human visual system that is critical to
its success as an efficient searcher is its active nature of
looking. The human visual system uses variable resolu-
tion sampling to capture the image on the retina. The res-
olution is highest in the central (foveal) region and rapidly
falls toward the periphery. This provides both high acu-
ity and a large field of view without the accompanying
data glut.
For a foveated visual system to be effective, however, it

must be able to deploy a suite of eye movements to scan the
visual field. To build a detailed representation of the image,
the human visual system uses a dynamic process of actively
scanning the visual environment using discrete fixations
linked by saccadic eye movements (Yarbus, 1967). The eye

gathers most information during the fixations whereas
little information is acquired during the saccades due
to saccadic suppression and motion blurring (e.g., Burr,
Morrone, & Ross, 1994). During each fixation, humans
presumably analyze the scene with the high-resolution fo-
vea and use the low-resolution peripheral information and
memory to plan subsequent fixation and search for spe-
cific targets. An understanding of how the human visual
system selects and sequences image regions for scrutiny
is not only important to better understand biological vi-
sion but is also the fundamental component of any fo-
veated, active, artificial vision system. The instantiation
of automatic search models into the next generation of
efficient, foveated, active vision systems (Klarquist &
Bovik, 1998) could be potentially applied to a diverse
array of problems including automated pictorial database
query and data mining; image understanding; autonomous
vehicle navigation; real-time, foveated video compression
(Lee, 2000); and automated visual search in, for example,
cancer detection.
Previous visual search experiments that involved the

detection of targets in the presence of distracters support
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the hypothesis that saccadic programming during a visual
search task is not random but can be influenced and guided
by many visual cues (Wolfe, 1998, Wolfe & Horowitz,
2004), such as color (Williams, 1967) and shape (Findlay,
1997; Murray, Beutter, Eckstein, & Stone, 2003), in the
periphery and hence affect search performance. For
example, by measuring the accuracy of the first saccade
in a 10-AFC letter discrimination task, Murray et al.
(2003) demonstrate that saccadic targeting is not random
but uses shape cues in the search task. The degree to
which these features, which are generally salient and
against a blank background, affect multiple fixation search
strategies is usually measured using reaction times and
detection accuracy. Reaction times and accuracy results,
however, do not reveal what image features or structural
cues are attracting the observer’s gaze.
Recently, the theory of classification images (Eckstein

& Ahumada, 2002; Simoncelli, 2003)Va noise-based
reverse correlation techniqueVhas been extensively used
in psychophysics to reveal auditory (Ahumada & Lovell,
1971), spatial (Beard & Ahumada, 1998), and spatiotem-
poral (Neri & Heeger, 2002) mechanisms used by human
observers in detection tasks, discrimination tasks, or both.
The basic idea underlying the classification image para-
digm is that external noise added to a discrimination task
reduces the signal-to-noise ratio and therefore influences
the subject’s response to the stimulus. Assuming that
subjects use linear time-invariant strategies, this paradigm
analyzes correlations across the noise samples to reveal
strategies used by the subjects to perform the classifica-
tion task. In this paper, we use the classification image
paradigm as the image analysis routine to investigate
search strategies.
Eye movements are necessary for any foveated visual

system and are a salient feature of (natural) visual search.
Naturally, there has been considerable interest in in-
vestigating image features that influence human eye
movements in natural viewing tasks (Parkhurst & Niebur,
2003; Reinagel & Zador, 1999). The result of analysis at
the point of gaze reveals that eye movements are not
really random (despite the staggering number of fixations
made in the duration of the task) but are possibly drawn
to image patches with high contrast and low interpixel
correlation. An investigation into these point-of-gaze
statistics in a visual search task has the potential to reveal
strategies (Rajashekar, Cormack, & Bovik, 2002) em-
ployed by observers and motivates the approach used in
this paper.
The human visual system has probably evolved multiple

mechanisms for controlling gaze. These mechanisms differ
in the amount of image processing and interpretation they
require, and the relative importance of each of them is
probably situation dependent. Because mechanisms that
require relatively little image interpretation are likely to
be most relevant for current work in artificial vision, our
goal is to develop an image-based theory of human eye
movements to isolate and understand the data-driven

mechanisms that guide eye fixations. In this paper, using
a combination of eye tracking and classification image
analysis, we extracted low-level image features used by
observers in a search task.
We recorded the eye movements of three observers

as they searched for simple geometric targets (shown in
Figure 1) embedded in a noise stimulus. The noise had a
Fourier magnitude that was inversely proportional to the
spatial frequency. An example of the stimulus with an
observer’s eye movements superimposed on it is shown in
Figure 2. A quick examination of the stimulus might help
the reader to appreciate the difficulty of the search task.
Further, the pattern of fixations in Figure 2Vwhich was
fairly typicalVmay even suggest that in a stimulus with
such low signal-to-noise ratios, observers might be simply
deploying their fixations uniformly across the stimulus,
without respect to any spatial structure, until the fovea
fortuitously landed close enough to the target for detec-
tion to occur. However, as we will demonstrate, a simple
reverse correlation analysis of the noise stimuli at the
point of gaze reveals quite a different strategy.

Figure 1. Targets used in the search task.

Figure 2. An example of the stimulus with superimposed eye
movements from a single trial. The white line indicates the gaze
position recorded from the eye tracker. The red dots indicate the
computed location of fixations. The cyan diamond shows the
location of the target (in this case, the triangle). The dashed green
rectangles show the size of the noise patches extracted around
each fixation locus for analysis.
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Methods

Observers

Three observers were used for the experiments. Two
of these observers (L.K.C. and U.R.) were authors, and the
third (E.M.) was naive as to the purpose of the experiment.
All observers either had normal or corrected-to-normal
vision.

Stimuli and tasks

The stimuli consisted of simple geometric targets
embedded in noise. The noise had a Fourier magnitude
that was inversely proportional to the spatial frequency.
This type of noise, generally referred to as 1/f noise,
mimics the average spectrum of natural images (Field,
1987). The presence of more salient large-scale structures
in this type of noise (as compared with white noise) makes
1/f noise a desirable stimulus in these types of experi-
ments. A set of nine noise images was generated offline
and used throughout the experiment. The targets were
simple shapes, viz., circles, dipoles, triangles, and bow
ties (abutting triangles), as shown in Figure 1. The signal-
to-noise ratio of the stimuli was set so that the observ-
ers had to make approximately 20 fixations to find the
target (this corresponded to signal a Michelson contrast of
10% and a noise RMS contrast of 23%). The target and
the noise stimuli had approximately the same mean
luminance such that local luminance by itself was not a
cue to the target location. The stimulus size was 640 �
480 pixels and the size of the embedded target was 64 �
64 pixels (1.2 � 1.2 deg). The stimuli were displayed
on a 21-in., gamma-corrected monitor at a distance of
180 cm from the observer. The screen resolution was set
at 640 � 480 pixels (12 � 9 deg), corresponding to about
52 pixels/deg of visual angle. The MATLAB psychophys-
ics toolbox (Brainard, 1997; Pelli, 1997) was used for stim-
ulus presentation.
The observer’s task during each trial was to locate the

target as quickly as possible. At the beginning of each block
of 50 trials, observers were told which target would be
presented. Each observer was presented with 250 trials per
target. Very rarely, when the eye tracker lost track of the
observer’s gaze for the entire period of a trial, the trial was
discarded. On each trial, one of the nine noise images was
selected, and the target was added to the noise at a random
spatial location (with the constraint that the target did not
overlap the edge of the display). Every trial had a hidden
target; there were no catch trials in which the target was
omitted. However, because the size of the target was small
compared with that of the stimulus, one could consider
all stimulus regions not containing the target to resemble
catch trials in the traditional psychophysics experiments.
On finding the target (or what appeared to be a target),

the observer pressed a button. Following the button press,
the observer was given feedback about the correct target
location and then proceeded to the next trial. Because the
signal-to-noise ratio was very low, on average, observers
were able to locate the hidden target only in 50% of the
trials. A trial was considered a hit if the observer’s last
fixation landed anywhere in the 64 � 64 pixel area of the
target. An example of the stimulus is shown in Figure 2,
with the location of the target (a triangle in this case) in-
dicated by the cyan diamond. Also shown are an observ-
er’s recorded sequence of eye movements and computed
fixations, the details of which will be discussed below.

Eye tracking

Human eye movements were recorded using an SRI
Generation V Dual Purkinje eye tracker. It has an accuracy
of G10 arcmin, a precision ofÈ1 arcmin, a response time of
under 1 ms, and a bandwidth of DC to 9400 Hz. The output
of the eye tracker (horizontal and vertical eye position
signals) was sampled at 400 Hz by a National Instruments
data acquisition board in a Pentium IV host computer,
where the data were stored for offline data analysis. The
effective spatial resolution of the data acquisition board
(corresponding to the 16-bit resolution of the input
channels) was over an order of magnitude higher than the
precision of the eye tracker, guaranteeing that no informa-
tion was lost in the sampling process.
A bite bar and a forehead rest were used to restrict the

subject’s head movement. The subject was first positioned
in the eye tracker and a system lock established onto the
subject’s eye. A linear interpolation on a 3 � 3 calibration
grid was then done to establish the transformation between
the output voltages of the eye tracker and the position of
the subject’s gaze on the computer display. During the
experiment, periodic verifications (every 10 trials) of the
calibration were done by displaying a dot on the display at
the computed position of gaze in real time and, if nec-
essary, recalibration was done (although this was rarely
required).

Image data acquisition

The sampled voltages from each trial were converted to
gaze coordinates (i.e., position of gaze on the image in
pixels). Next, the path of the subject’s gaze was divided
into fixations and the intervening saccadic eye movements
using spatiotemporal criteria derived from the known
dynamic properties of human saccadic eye movements. A
sequence of eye position recordings was considered to
constitute a fixation if the recorded gaze coordinates re-
mained within a stimulus diameter of 0.5 deg visual angle
for at least 100 ms. If in the 50-ms window following a
fixation the sequence of gaze recordings was found to
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have occurred at a distance greater than 1 deg from the
previous fixation point, a saccade was assumed to have
been executed and the previous fixation was terminated.
The exact algorithm (adapted from Applied Science
Laboratories, 1998) accommodated for drifts, blinks, and
microsaccadic eye movements.
The resulting pattern of fixations for a single trial is

shown by the red dots in Figure 2. The white lines show
the eye movement trajectories linking the fixations. We
defined a region of interest (ROI) as a square region of
size 128 � 128 pixels (twice the size of the target) around
each fixation (two examples of which are shown by the
dashed green boxes in Figure 2). The noise in the ensem-
ble of these ROIs around the fixation points was then
analyzed to determine if it contained any statistical
relationships to the targets for which the subject was
searching.

Results

We extended the classification image technique by incor-
porating eye movements as follows. For a given observer
and target, noise pixels in an ROI (twice the size of the
target) around each fixation were averaged across trials to
yield classification images. Every fixation made by the
observer, including the final fixation and those that landed
on the target, was used in the analysis. A vast majority of
these fixations, however, did not land on the target. A
resulting classification image for one observer (L.K.C.)
searching for the dipole target is shown in Figure 3A. In
this image (and all further classification images), gray
denotes mean luminance, white corresponds to pixel
values above the mean luminance, and black corresponds
to pixel values below the mean luminance. To enhance the
details in the classification images, a statistical thresh-
olding was performed by setting pixel intensities within
one standard deviation of the mean equal to the mean
(Beard & Ahumada, 1998). The statistically thresholded
classification image corresponding to the classification
image in Figure 3A is shown in Figure 3B. The statisti-
cally thresholded results for all observers and targets are
shown in Figure 4. The first row in Figure 4 illustrates the

four targets (circle, dipole, triangle, and bow tie) that
observers were instructed to find in the stimulus. Each of
the other rows shows the classification images for the
three observers (L.K.C., U.R., and E.M.) for these targets.
Each subject made an average of 3,000 fixations per
target. Thus, each classification image is the result of
averaging around 3,000 noise patches.
To quantify the uncertainty associated with the shapes of

these classification images, we bootstrapped (Efron, 1994)
the averaging procedure and computed the boundaries
of each of the resulting thresholded classification images
as follows. To detect the boundaries of the statistically
filtered classification images, the two largest regions in the
statistically filtered image were detected using a connected-
components algorithm. The outlines of each of these re-
gions were then used to represent the boundary of the
classification image. Bootstrapping was then used to ver-
ify the robustness of these boundaries. First, the ensemble
of noise patches at the observer’s point of gaze was resam-
pled (with replacement) 200 times. The image patches in
each bootstrap sample (3,000 patches, on average) were
then averaged together, statistically filtered, and processed
to detect the boundaries. The boundaries of the resulting
200 classification images were then added together and
superimposed on the classification images to reflect the
stability of the boundary. The aggregate of all of the boot-
strapped boundaries is shown superimposed in red in
Figure 4.

Figure 3. Statistical thresholding of classification images. (A) Orig-
inal classification image; (B) classification image after statistical
thresholding.

Figure 4. Classification images at point of gaze: Statistically filtered
classification images for three observers (L.K.C., U.R., and E.M.)
and the four targets (shown in the top row against a neutral gray
background to highlight the edges of the target). The red outlines
indicate the aggregate of the edges of the classification images
from 200 bootstrap replications of the noise averaging. A well-
defined boundary indicates that the structure in the classification
image is robust, whereas spatially diffused edges indicate that the
shape of the classification image in that region varies across trials.
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Discussion

The most striking result of this analysis is the emergence
of classification images (in Figure 4) that resemble spatial
features of the target. Notice that the boundaries of most
classification images from the bootstrap procedure are
well defined, indicating that the shape information for
these classification images is indeed reliable. (In fact, the
full width of a bootstrapped contour at a given location
gives an upper bound on the width of the 99.5% con-
fidence interval about that location). This indicates that
although gaze is being rapidly shifted about the image in
an effort to find the target as quickly as possible, saccadic
programming is being clearly influenced by spatial
features in the noise with sufficient precision to generate
these robust classification images.
Also worthy of note is the fact that these classification

images vary in a target-dependent manner within an ob-
server (to varying degrees), and they also vary across
observers for a given target. The data of L.K.C. and E.R.,
for example, show fairly dramatic changes across the
targets, indicating that the gaze of these observers was
attracted by features unique to a particular target. For ex-
ample, this effect is most pronounced for observer L.K.C.
who, for the case of the circle, seemed to be fixating at
regions of high luminance but modifies the search tem-
plate for the dipole search by fixating at regions that have
a luminance profile that matches the horizontal edge of
the dipole. This adaptation of the classification image to
match some feature of the target is evident, albeit to a
lesser extent, for observer E.M. who changes his strategy
for the dipole, the triangle, and the bow tie. Observer U.R.,
in contrast, seemed to use a simpler heuristic, consisting of
fixating bright regions of roughly the appropriate size.
The interobserver variability is evident for most of

the shapes. Even in the case of the triangle, in which the
classification images look fairly similar, closer inspec-
tion reveals some subtle but reliable differences. Observer
L.K.C.’s gaze tends to land on the right side of bright
regions that have a dark region further to the right, whereas
observer U.R.’s gaze lands on the left side of bright
regions that have dark regions further to the left. Both

of these observers, however, are attracted to roughly
circular bright areas on average, whereas observer E.M.
clearly favors a more angular, elongated structure.
We also simulated an observer who randomly looks

about the stimulus hoping to find the target by chance (this
behavior was largely consistent with our own introspection
of behavior in this very difficult task; observers reported
often being surprised when their gaze landed on the target).
We did this by simply selecting random spatial coordinates
from a uniform distribution with the constraint that the
entire ROI surrounding the fixation point had to be within
the image. The number of random fixations used was ap-
proximately equal to that comprising the samples from the
human observers (around 3,000). The result of adding the
noise pixels at the random fixation points is shown in
the far right in Figure 5, where all the classification im-
ages in the figure are displayed using the same range of
gray scales to highlight the relative pixel magnitudes across
classification images. The lack of any image structure
in the random sampling case and the ability to generate
many classification images across subjects from the same
set of 1/f noise stimuli indicates that observers are not
random searchers but are actually directing their fixations
to regions that resemble some feature of the target.
To verify that observers were indeed trying to follow

our instructions to find the target quickly, we analyzed
the histograms of the fixation duration (time per fixation)
and saccadic magnitudes for observers’ eye movements
for this experiment. A relatively short fixation dwell time
(mean = 0.25 s) and a wide range of saccadic magnitudes
(mean = 3 deg, SD = 1.8 deg) confirmed that our observers
were indeed trying to survey the range of the stimulus area
quickly and were not fixating on particular regions for an
inordinately long time. These statistics reflect previously
reported measures of fixation durations and saccade mag-
nitudes in natural viewing tasks (Duchowski, 2002; Rayner,
1998; Yarbus, 1967).

Effects of 1/f noise on the analysis

Traditionally, experiments using the classification im-
age analysis have used additive white Gaussian noise as

Figure 5. Human versus random search. The first four classification images (from left to right) show the classification images for observer
L.K.C. across the four targets. To simulate a searcher who looks about randomly hoping to find the target by chance, the noise stimuli
were sampled randomly. The result of averaging the noise pixels at these random fixation points is shown in the far right. The lack of
significant structure in the classification image for the random searcher sharply contrasts with the obvious target-like structures generated
by the observer. All the classification images are displayed using the same range of gray scales to highlight the relative pixel magnitudes
across classification images.
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the masking stimulus. White noise images, being spatially
uncorrelated by design, do not contribute to any artificial
structure to the classification images. In our experiments,
we used 1/f noise as the stimulus because the presence of
many large-scale, target-like salient features inherent in
the noise structure made it an effective masker. Due to the
correlated nature of 1/f noise, the resulting classification
images are not unbiased linear templates. To obtain the
true unbiased linear estimator, we can apply a prewhitening
filter (Abbey & Eckstein, 2000) to the classification im-
ages obtained using 1/f noise. An example of the dipole
classification image for observer L.K.C. before and after
prewhitening is shown in Figure 6. However, even the
classification images obtained using the prewhitening
filter does not reflect the true unbiased template in our
experiments. This is because, unlike the experimental sit-
uation in psychophysics, the contribution of each pixel
to the creation of the classification image is shift variant
across trials (fixation points in this case) due to several
factors. First, oculomotor precision and measurement
errors inherent in eye movements and their recording
result in spatial uncertainty in the exact location of an
observer’s fixation. Second, even if we ignore errors in
recording fixations and simply assume that an observer
was using only a single visual feature to succeed in the
search task, there is no guarantee that the observer will
precisely fixate the same location on this feature every
time. For example, assume that the observer always
looked for black triangles in the case of the Bbow-tie[
search. During search, the observer could decide to fix-
ate the left triangle in some trials and the right triangle
on others. Thus, the noise samples extracted around
these fixations are not necessarily perfectly aligned
across trials, resulting in spatially blurred classifica-
tion images. However, this does not imply that observers
are unable to use precise shape information. In a related
study (Beutter, Eckstein, & Stone, 2004), subjects per-
formed an 8-AFC contrast discrimination task and classi-
fication images were generated using a saccade-contingent
analysis and an 8-AFC perceptual decision framework.
The resulting classification images for these two cases
were not found to be significantly different from each
other, indicating that saccade mechanisms can indeed use
precise shape information to guide search.

Conclusions

Analysis of stimuli at the observer’s point of gaze can
provide an understanding of strategies used by observers in
visual tasks. Although existing proof for the guided
saccade-targeting hypothesis is supported using efficiency
of task performance or reaction times, in this paper we
demonstrated that classification image analysis and accu-
rate eye tracking can be used in conjunction to reveal shape
cues that guided saccades in a difficult visual search task.
Our results indicate that even in very noisy stimuli, human
observers are not random in their search strategy; instead,
they make directed eye movements to regions in the stimuli
that resemble some structural feature of the target. Given
the difficulty of the task and the rapidity at which fixations
are made, we find it remarkable that the visual system
seems to analyze spatial structure in the low-resolution
periphery and direct fixations to regions that resembled
some spatial feature of the target.
The goal of this study was to investigate the influence

of structural cues in visual search. However, reverse cor-
relation analysis of noise stimuli at the point of gaze of
observers has also been used to provide valuable infor-
mation on the time course of how visual information is
gathered in the course of visual search (Caspi, Beutter,
& Eckstein, 2004). Using a 5-AFC search for a bright
Gaussian target among four dim distracters in the presence
of dynamic noise, it was shown that visual informa-
tion gathered before the initiation of a saccade is used to
plan future saccades even if the information cannot be
used for the current saccade. Recently, it has been shown
that human observers nearly achieved optimal search
performance in a similar search task (Najemnik & Geisler,
2005). Yet, truly, optimal performance is computationally
expensive. The classification images obtained in our ex-
periments suggest that subjects do not necessarily use all
the target features to succeed in the search task, but often
they only use a subset of the target features. Moreover, the
differences we find across observers, even when the tar-
gets are simple geometric shapes, indicate that observers
adopt idiosyncratic heuristics even if, in the end, they all
approach optimal behavior.
The analysis procedure presented in this paper is not

without its shortcomings. The classification images result-
ing from this analysis lack in the spatial detail that usually
results from psychophysical trials, where the contribution of
each pixel to the creation of the template is shift invariant
across the trials. With the added dimension of eye move-
ments, the noise pixels across trials are no longer
guaranteed to be perfectly aligned, and it is therefore
very likely that many image features are blurred or even
lost in the averaging process. This issue of spatial un-
certainty introduced by eye movements was recently ad-
dressed by constraining the locations of both the target and
fixations to 1 of 49 square regions on a rectangular grid
(Tavassoli, van der Linde, Cormack, & Bovik, 2004).

Figure 6. Effect of prewhitening filter on classification image.
(A) Original classification image (processed with average filter)
and (B) classification image after statistical thresholding.
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Fixations in any location within a tile were automatically
used to select the noise within that tile. By cleverly com-
bining the speed of data collection of the eye tracking
methodology with the spatial accuracy of the psychophys-
ical setup, this approach produces classification images of
higher spatial resolution than reported here using fewer
trials than traditional 2-AFC psychophysical visual tasks.
We are investigating other shift-invariant algorithms,

such as the magnitude of the Fourier transform, and more
sophisticated data analysis algorithms, like principal com-
ponent analysis (Duda, Hart, & Stork, 2000) and in-
dependent component analysis (Hyvärinen, Karhunen, &
Oja, 2001), to analyze the ROIs. Also, given that an ob-
server is fixating at a point, the selection of the next
fixation point is based on the low-resolution periphery.
To address this issue, we are attempting a multiresolution
analysis where the image patch at the next fixation point
is filtered using established models of resolution fall off
(Geisler & Perry, 1998) to simulate the variable resolu-
tion perception of the human visual system.
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