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We present an analytical comparison between linear slow feature anal-
ysis and second-order independent component analysis, and show that
in the case of one time delay, the two approaches are equivalent. We
also consider the case of several time delays and discuss two possible
extensions of slow feature analysis.

1 Introduction

In data analysis, it is often desirable to transform the input signals into a
new representation that recovers as much information as possible about
the underlying processes. In the classical example of two people speaking
simultaneously while being recorded with two microphones, for instance,
the observed signal is a mixture of their voices. A more useful represen-
tation here would be one where each signal component contains only the
information about a single speaker. In the visual domain, one might be
interested in a representation that is invariant to typical transformations,
such as translation or zoom. A variety of linear and nonlinear methods
have been developed to extract the interesting features from an observed
signal.

In this letter, we focus on two methods that consider different prop-
erties of the observed signal: independent component analysis (ICA) (see
Hyvärinen, Karhunen, & Oja, 2001, for an overview) and slow feature anal-
ysis (SFA) (Wiskott & Sejnowski, 2002). ICA finds a representation of the
data such that signal components are mutually statistically independent,
which can be used to separate the two speakers in the example above. SFA
extracts slowly-varying features, which can be used in the second exam-
ple to learn visual invariances. At first glance, these two methods are very
different and even seem to be conflicting, since two slowly varying signals
of finite length are intuitively more likely to have statistical dependencies
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than quickly varying ones. However, we will see that ICA and SFA have
common properties, which we are going to point out by comparing the two
algorithms mathematically.

To carry out the comparison, we have to apply some restrictions. SFA
is constrained to nonwhite signals with a temporal structure (e.g., speech
signals), and it is based on second-order statistics. We therefore compare it
to ICA algorithms that use only second-order information and need a tem-
porally structured signal as well (Molgedey & Schuster, 1994; Belouchrani,
Abed Meraim, Cardoso, & Moulines, 1997; Ziehe & Müller, 1998; Zibulevsky
& Pearlmutter, 2000; Nuzillard & Nuzillard, 2003). SFA is usually applied as
a nonlinear method: it uses a nonlinear expansion to map the input signal
into a feature space and then solves a linear problem there. ICA, on the other
hand, is typically a linear method, since in the nonlinear case, the problem
is in general underdetermined (because the solution is not unique), and
there is thus no guarantee of recovering the original sources (Hyvärinen
& Pajunen, 1999; Jutten & Karhunen, 2003). (However, there do exist some
nonlinear approaches that make additional assumptions about the nonlin-
ear mapping or the input data.) To make a comparison between the two
methods possible, we will restrict SFA to the linear case. Nevertheless, all
calculations in this letter are essentially the same for linear or nonlinear
SFA.

2 Linear Mixing and Unmixing

Let x(t) = [x1(t), . . . , xN(t)]T be a linear mixture of a multidimensional
source signal s(t) = [s1(t), . . . , sN(t)]T ,

x(t) = As(t) , (2.1)

where A is a square mixing matrix and different components si come from
statistically independent sources. In the following, we will assume that
s(t) and x(t) have zero mean, without loss of generality. A common linear
preprocessing step in many ICA algorithms as well as in linear SFA is the
whitening of the input signal x(t). Whitening results in a signal y(t) = Wx(t)
with mutually uncorrelated components, 〈yi (t)yj (t)〉 = 0 ∀ i �= j , unit vari-
ance, 〈yi (t)2〉 = 1, and zero mean, 〈yi (t)〉 = 0, where 〈·〉 denotes averaging
over time. It can be shown that after the whitening step, an orthogonal trans-
formation Q on y is sufficient to yield independent components (Comon,
1994) or slowly-varying features (Wiskott & Sejnowski, 2002). Therefore,
the output signal u(t) can be obtained by combining the whitening matrix
W and a rotation matrix Q:

u(t) = Qy(t) = QWx(t) . (2.2)
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In the following, we will always assume whitened data y(t) and focus on
finding Q. Since zero mean and whitening are preserved under any orthog-
onal transformation, the components of u(t) also satisfy these conditions:

〈ui (t)〉 = 0 (zero mean) (2.3)

〈ui (t)2〉 = 1 (unit variance) (2.4)

∀i �= j : 〈ui (t)u j (t)〉 = 0 (decorrelation). (2.5)

These properties fulfill the constraints imposed by SFA (cf. section 4) and
are a good prerequisite for ICA because they constrain the output signals
ui (t) to be statistically independent in the first and second order.

3 Second-Order Independent Component Analysis

Given the linear mixture 2.1, ICA tries to retrieve the source signal compo-
nents s(t) from the input signal x(t). The mixing matrix A is unknown, and
the source signal components are assumed to be mutually independent.
The typical approach is to define an objective function that is a measure of
independence of the estimated source signal components ui . The problem
is then solved by optimizing this function with respect to Q.

There exist different measures of independence. Most algorithms are
based on the assumption that two signals are independent if their joint
distribution is equal to the product of their marginals (e.g., Cardoso &
Souloumiac, 1993; Hyvärinen, 1999; Lee, Girolami, & Sejnowski, 1999). A
corresponding measure in this case is the Kullback-Leibler divergence. We
will refer to this approach as higher-order ICA.

This definition, however, does not capture all aspects of independence.
Consider a signal without temporal autocorrelation (e.g., white noise) and
a second signal that is equal to the first one but shifted in time. Applying
the measure of independence, the two signals appear to be independent,
although they are actually a time-shifted copy of each other and thereby
intuitively strongly dependent. This dependence across time can be taken
into account using a different measure where two signals are considered
statistically independent if all time-delayed correlations are zero (second-
order ICA) (Molgedey & Schuster,1994; Belouchrani et al., 1997; Ziehe &
Müller, 1998). In order to successfully apply this measure, the source signals
need to have a time structure (must be nonwhite), which is also a necessary
condition for SFA. An alternative formulation of this idea is to use a model of
the sources that includes a dynamics in time and assume that the time series
are independent as a whole (Pearlmutter & Parra, 1996). In this letter, we are
going to study algorithms based on this latter definition of independence,
following the formulation by Molgedey and Schuster (1994).
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To derive an objective function for second-order ICA, we first intro-
duce time-delayed correlation matrices of the estimated source signal
u(t),

C(u)(τ ) := 〈
u(t)u(t + τ )T 〉

, (3.1)

where τ is the time delay between two signals. We denote the entries of
C(u)(τ ) as C (u)

i j (τ ). For a signal u(t) with independent components, C(u)(τ )
should be diagonal for all τ . We are therefore looking for an objective
function that, when optimized, jointly diagonalizes those matrices.

It is common in practice to use a symmetrized version of the correlation
matrices:1

C(u)(τ ) := 1
2

[〈
u(t)u(t + τ )T 〉 + 〈

u(t + τ )u(t)T 〉]
. (3.2)

Computing the symmetrized matrices is equivalent to applying the algo-
rithm to the original input data and to the data reversed in time (because
〈u(t + τ )u(t)T 〉 = 〈u(t)u(t − τ )T 〉). This reflects the fact that with respect to
the unmixing problem, the time direction is not important. Moreover, the
symmetric form can always be diagonalized with a rotation matrix (while
the nonsymmetric matrices can have complex eigenvalues and eigenvec-
tors) and has better numerical properties. Note, however, that in some
pathological cases, the cross-correlation terms can cancel out each other:
For example, if u(t) = [sin (t), cos (t)]T , there clearly are cross-correlations
but in the symmetrized version, the off-diagonal terms in equation 3.2 are
zero for all τ . The two signals are thus considered independent by the
algorithm.

We first focus on the case of a single time delay τ (Molgedey & Schuster,
1994). The extension to more than one time-delayed correlation matrix is
straightforward and will be described in section 5. Because of the whiten-
ing step, equation 2.5, the correlation matrix with time delay zero is already
diagonal. With one time delay, the ICA algorithm thus reduces to diagonal-
izing a single time-delayed correlation matrix C(u)(τ ). This can be achieved
by using the method of Jacobi (Cardoso & Souloumiac, 1996) to minimize
the sum of the squared off-diagonal entries, a technique used in several
second-order ICA algorithms (Belouchrani et al., 1997; Ziehe & Müller,
1998) as well as in methods based on higher-order statistics (Cardoso &
Souloumiac, 1993). Using this method, we can define a simple objective

1 In Ziehe and Müller (1998) the correlation matrices are not explicitly defined in the
article, but the Matlab implementation made available by the authors uses the symmetric
form.
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function subject to minimization,

�ICA(τ ) :=
N∑

i, j=1
i �= j

(
C (u)

i j (τ )
)2

(3.3)

=
∑
i �= j

(
qT

i C(y)(τ )q j
)2

, (3.4)

where qi is the ith row of Q. �ICA is a function of the vectors qi , which
are subject to learning, and of the whitened signal y(t), which is given.
This objective function is optimized by a sequence of elementary rotations
within the plane spanned by two axes. A possible optimization procedure
has been described by Cardoso and Souloumiac (1996); a more efficient
optimization schedule has been derived by Blaschke and Wiskott (2004a).

4 Linear Slow Feature Analysis

Given a whitened input signal y(t) = [y1(t), . . . , yN(t)]T , linear SFA finds a
rotation matrix Q such that the components ui of the output signal u(t) =
Qy(t) vary as slowly as possible in time and are ordered by decreasing
slowness (the first one being the slowest possible, the second one the next
slowest uncorrelated to the first, and so on). As a measure of slowness, we
define (small values indicating slowly varying signals)

�(ui ) := 〈u̇i (t)2〉, (4.1)

which has to be minimized (Wiskott & Sejnowski, 2002). Due to the earlier
whitening step, each output signal ui (t) has zero mean and unit variance (see
equations 2.3 and 2.4). This ensures that the solution will not be the trivial
solution ui (t) = const. The decorrelation of the output signals, equation 2.5,
guarantees that different components carry different information.

We first show how to solve the optimization problem of SFA in a way
similar to that described by Wiskott and Sejnowski (2002) and then establish
a link between SFA and second-order ICA. For discrete time series, the first
derivative of u(t) can be approximated in the first order by

u̇(t) ≈ u(t + 1) − u(t). (4.2)

Using this approximation, we can rewrite the SFA objective function, equa-
tion 4.1, as

�(ui ) ≈ 〈
(ui (t + 1) − ui (t))

2 〉
(4.3)

=〈ui (t + 1)ui (t + 1)〉 + 〈ui (t)ui (t)〉
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−〈ui (t)ui (t + 1)〉 − 〈ui (t + 1)ui (t)〉 (4.4)

= 2〈ui (t)2〉 − 2〈ui (t)ui (t + 1)〉 (4.5)

(since 〈ui (t + 1)2〉 = 〈ui (t)2〉 because we average over all t)

= 2 − 2〈ui (t)ui (t + 1)〉 (4.6)

(since 〈ui (t)2〉 = 1 because u(t) is white (see equation 2.4))

Since the constant factor does not matter during optimization, instead of
minimizing � (ui ), we can maximize

�̃ (ui ) := 1 − 1
2
� (ui ) (4.7)

= 〈ui (t)ui (t + 1)〉 (4.8)

= C (u)
i i (1) (4.9)

= qT
i C(y)(1)qi . (4.10)

The objective function �̃ (ui ) is a function of the rotation matrix Q, and we
are thus searching for the orthogonal weight vectors qi in equation 4.10 that
maximize �̃(ui ). The solution for i = 1 is obviously the eigenvector of the
largest eigenvalue of C(y)(1), which yields the slowest component u1(t) =
qT

1 y(t). The following eigenvectors in order of decreasing eigenvalue yield
the next-slowest components, u2(t), u3(t), and so forth.

Therefore, to extract all slow components, the maximization problem,
equation 4.10, can be formulated as an eigenvalue problem,

C(y)(1)QT = QT�, (4.11)

where � denotes a diagonal matrix with �i i being the ith largest eigenvalue
and qi the corresponding eigenvectors.

In order to allow a better comparison with second-order ICA, we now
want to deduce an alternative formulation of SFA; that is, we want to
construct an objective function similar to that of second-order ICA. First,
we show the equivalence of solving the eigenvalue problem, equation 4.11,
and the diagonalization of C(u)(1). If we multiply both sides of equation 4.11
with Q, we obtain

C(u)(1) = QC(y)(1)QT = �. (4.12)

Since � is diagonal C(u)(1) is diagonal too. Therefore, solving the eigen-
value problem for C(y)(1) is equivalent to finding a rotation matrix Q such
that the time-delayed correlation matrix C(u)(1) is diagonal. Second, to
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perform the diagonalization, we minimize all off-diagonal entries of C(u)(1)
using the same Jacobi scheme as for second-order ICA (see section 3) and
define the following objective function for SFA:

�̃SFA :=
∑
i �= j

(
C (u)

i j (1)
)2

(4.13)

=
∑
i �= j

(
qT

i C(y)(1)q j
)2

. (4.14)

Minimizing this expression produces the same slow components
u1(t), . . . , uN(t) as obtained by the eigenvalue problem, equation 4.11, again
assuming an additional sorting step. Note also that this is equivalent to a
decorrelation of the time derivatives of the output signal components ui (t)
(cf. Wiskott, 2003) since 〈u̇i u̇ j 〉 = −2 C (u)

i j (1) for i �= j .
Interestingly, the objective function, equation 4.14, is identical to the one

for ICA, equation 3.4. With this observation, we arrive at the important
result that linear SFA is formally equivalent to second-order ICA with time
delay one.

To bring equation 4.13 into a form that can be understood more intu-
itively in the sense of SFA, we can use the fact that the sum of all squared
entries of correlation matrices with a given time delay τ is invariant under
orthogonal transformations,

∑
i, j

(
C (u)

i j (τ )
)2 =

∑
i, j

(
C (y)

i j (τ )
)2 = const. (4.15)

We can split this sum in two terms,

∑
i, j

(
C (u)

i j (τ )
)2 =

∑
i

(
C (u)

i i (τ )
)2 +

∑
i �= j

(
C (u)

i j (τ )
)2 = const , (4.16)

so that it is easy to see that the minimization of �̃SFA is equivalent to the
maximization of

�SFA :=
∑

i

(
C (u)

i i (1)
)2

(4.17)

=
∑

i

(
qT

i C(y)(1)qi
)2

. (4.18)

Having started from minimizing temporal variations, equation 4.1, as an
objective for SFA, we now arrive at an objective for maximizing squared
autocorrelations, equation 4.7, at time delay one. This relation can be
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interpreted intuitively. A signal component with a large squared autocor-
relation has a high temporal predictability. If the autocorrelation is positive
(i.e., C (u)

i i (1) > 0), predictability implies that the signal component has to
vary slowly.

What if the autocorrelation is negative? This could happen if, for ex-
ample, ui (t) has alternating signs for successive data points. Consider the
signal

ui (t) :=
{

−1 for t odd

1 for t even
, (4.19)

with 1 ≤ t ≤ T . This signal has zero mean and unit variance and thus fulfills
constraints 2.3 and 2.4. Furthermore, it is favorable in terms of the objec-
tive 4.17, since C (u)

i i (1) has a large absolute value. On the other hand, this
is a very quickly varying component, which might seem paradoxical since
maximizing equation 4.17 should result in slowly varying components.
This apparent contradiction can be resolved by studying the constraints
imposed on the optimization of equation 4.17. Since Q is an orthogonal ma-
trix, the trace of C(u)(1) is invariant under the transformation u(t) = Qy(t)
(e.g., Zurmühl & Falk, 1997). If we consider all N possible components
in the optimization procedure, the decrease of one correlation C (u)

i i (1)
implies the increase of at least one other correlation C (u)

j j (1). Therefore,
extracting the most slowly varying signals implies that other extracted
components correspond to the most quickly varying signals. Hence, it is
reasonable to further minimize negative correlations since this implies that
other correlations will be maximized. As above, a successive sorting step is
required to bring the components in order of increasing temporal variation.

5 More Than One Time Delay

5.1 Second-Order ICA. We know that second-order ICA can always be
solved with a single time delay (Tong, Liu, Soon, & Huang, 1991). However,
the delay τ has to be chosen properly so that all eigenvalues of C(y)(τ )
are distinct. To obtain a more robust method, one can consider a certain
number T of time-delayed correlation matrices with respective time delays
τ = 1, 2, . . . , T and diagonalize them jointly (Belouchrani et al., 1997; Ziehe
& Müller, 1998). This leads to a straightforward extension of objective 3.3,
subject to minimization,

�ICAj :=
T∑

τ=1

κτ�ICA(τ ) (5.1)
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=
∑

τ

κτ

∑
i �= j

(
C (u)

i j (τ )
)2

(5.2)

=
∑

τ

κτ

∑
i �= j

(
qT

i C(y)(τ )q j
)2

, (5.3)

where we introduced positive factors κτ that allow us to weight correlation
matrices with different time delays differently. In equation 5.1, we write ICAj
for joint-diagonalization ICA. Pham and Garat (1997) have derived a formula
closely related to equation 5.3 with a maximum likelihood approach.

Extending the objective function of ICA in this way leads to the joint
diagonalization of several correlation matrices with different time delays.
Decorrelation is thus achieved over a time window of length T . It is in-
tuitively clear that by enlarging the window length, the unmixing perfor-
mance should improve until the width of the autocorrelation function is
reached. Exceeding this limit would introduce matrices consisting entirely
of zero mean noise, which would degrade the unmixing performance.

5.2 Linear SFA

5.2.1 Joint Diagonalization. We can use an argument similar to the one
used for second-order ICA in order to extend SFA to more than a single time
delay. Adding more time-delayed autocorrelations increases the temporal
predictability of the signal. Knowing the amplitude of a signal at a given
time can give a good prediction for the next T time points since they are
strongly correlated. Signals with large temporal predictability are in turn
likely to be slowly varying (cf. the end of section 4). Thus, an intuitive ex-
tension of the normal SFA objective, equation 4.17, subject to maximization,
is

�SFAj :=
∑

τ

κτ�SFA(τ ) (5.4)

=
∑

τ

κτ

∑
i

(
C (u)

i i (τ )
)2

(5.5)

=
∑

τ

κτ

∑
i

(
qT

i C(y)(τ )qi
)2

. (5.6)

As in equations 5.1 to 5.3, we have introduced weighting factors κτ for the
delayed correlation matrices. Note that this new objective, equations 5.5
and 5.6, is again equivalent to the ICA objective, equations 5.2 and 5.3, due
to the constancy of the sum of all squared entries of each time-delayed
correlation matrix, equation 4.16.
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We must be careful with this definition for two reasons. Firstly, while the
definition of slowness based on C (u)

i i (1) corresponds to our intuition of what
a slow signal is, C (u)

i i (2) can have a large, positive value for signal compo-
nents that we would not consider to be slow at all. In fact, the alternating
signal, equation 4.19, would yield a maximal value for C (u)

i i (2). Secondly,
consider the case where two time-delayed autocorrelations have opposite
signs, for example, C (u)

i i (1) < 0 and C (u)
i i (2) > 0. Maximizing objective func-

tion 5.5 would favor a decreasing value of C (u)
i i (1) (since it is negative) and

an increasing value of C (u)
i i (2). The former would intuitively tend to make

the signal faster, while the latter would make it slower. Thus, if the autocor-
relations of a component have different signs for different time delays, the
objective function appears to be inconsistent, at least for that component.
This conflict cannot be solved as easily as the one discussed at the end of
section 4. However, one can at least monitor the signs of the autocorrela-
tions and diagnose the inconsistent cases. It is not clear to us how often
these two problems arise in practice. We believe that by weighting the first
autocorrelation stronger than the others, for example, with an exponential
decay of the weights, the inconsistencies can be largely avoided.

5.2.2 Linear Filtering. An alternative to the joint diagonalization of sev-
eral correlation matrices with different time delays in analogy to second-
order ICA is to average over a range of time delays within one correlation
matrix and diagonalize just this one matrix. To do so, we introduce the
following new measure of slowness (cf. equations 4.7 to 4.10):

�̃(ui ) :=
〈

ui (t)

(∑
τ

κτ ui (t + τ )

)〉
(5.7)

=
∑

τ

κτ 〈ui (t)ui (t + τ )〉 (5.8)

=
∑

τ

κτ C (u)
i i (τ ) (5.9)

= qT
i

(∑
τ

κτ C(y)(τ )

)
qi (5.10)

=: qT
i C̃(y)qi , (5.11)

with constants κτ that weight different time delays differently. This defini-
tion differs from that of equations 4.7 to 4.10 in that ui (t) should not only be
well correlated to the next data point but to a weighted average over the next
T data points. This is a straightforward way of taking several timescales
into account. Note that the weighted averaging is a linear filter operation.
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As in the joint diagonalization extension, exponentially decaying weights
κτ := exp(−γ τ ) for different time delays seem to be a suitable choice. With
such weights, this measure of slowness is similar to the objective of tem-
poral smoothness used by Stone (1995) and somewhat related to the trace
learning rules introduced by Földiák (1991).

Because of the similarity of equation 5.11 with equation 4.10, we can
apply the steps that led from equation 4.10 to equation 4.18 and derive the
following objective function to be maximized,

�SFAl :=
∑

i

(
C̃ (u)

i i

)2
(5.12)

=
∑

i

(
qT

i C̃(y)qi
)2

, (5.13)

where C̃(u) is defined analogously to C̃(y) and SFAl stands for linear-filtering
SFA. Since this objective function is based on just one correlation matrix, it
does not have the problems mentioned above for the joint diagonalization
extension (see section 5.2.1).

Blaschke (2005, sec. 8.2.2) also considered extending SFA by simultane-
ously minimizing the variance not only of the first but also of higher-order
derivatives, which could result in even more stable signals. This would
also lead to equation 5.13, because discrete approximations of higher-order
derivatives involve multiple time delays. In this case, with positive weights
for all derivatives, the constants κτ in equation 5.10 would have values
with alternating signs (positive for odd τ and negative for even τ ), which is
somewhat counterintuitive. We do not fully understand the implications of
this effect but believe that higher-order derivatives do not offer a good way
of extending SFA to longer timescales, even though unmixing performance
was good in some simple examples.

6 Conclusion

The main result of this work is that linear SFA and second-order ICA with
time delay one are formally equivalent (see equations 3.4 and 4.14). This is
surprising, because SFA and ICA are based on two very different principles:
slowness versus statistical independence. These principles might seem to
contradict each other, because two analog signals of finite length would
typically become more statistically dependent if they are more slowly vary-
ing.

The formal equivalence of linear SFA and second-order ICA with time
delay allows us to apply the intuition we have gained for one algorithm
to deepen our understanding of the other. For example, it is known that
higher-order ICA applied to natural images learns linear filters similar to
Gabor wavelets (e.g., Bell & Sejnowski, 1997; van Hateren & van der Schaaf,
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1998), which in turn resemble receptive fields of simple cells in V1. On the
other hand, linear SFA (and therefore also second-order ICA with time delay
one) applied to natural image sequences learns filters similar to the principal
components of natural images, the first of which are effectively spatial low-
pass filters and therefore also generate slowly varying output signals. This
suggests that the solutions found by second-order ICA and higher-order
ICA can be very different in practice even though both methods try to
maximize statistical independence.

Despite the formal equivalence in the linear case and for time delay one,
SFA and ICA have different objectives and differ in the more general case.

Firstly, while in standard SFA the time delay is fixed to 1 due to the ap-
proximation of the time derivative, in ICA it can be chosen freely, or one can
use several correlation matrices with different time delays simultaneously
for optimal unmixing (see section 5.1). We have seen (see section 5.2.1) that
the same extension to several time delays can also be used for SFA, but that
the algorithm then becomes inconsistent with respect to the slowness ob-
jective if the entries of the time-delayed correlation matrices have different
signs for different delays. An extension more consistent with the slowness
objective is based on linear filtering before computing the time derivative
(see section 5.2.2). This also introduces several time delays, but in a different
way than used for ICA. Thus, when taking several time delays into account,
the conceptual differences between ICA and SFA become relevant.

Secondly, in the nonlinear case, many output signal components can be
extracted from a lower-dimensional input signal. With SFA, they would all
be uncorrelated and ordered by slowness, in agreement with the definition
in equations 2.3 to 2.5 and 4.1. With second-order ICA, they would not be
ordered in any way and would not be statistically independent for dimen-
sionality reasons. The results would therefore be inconsistent with the ICA
objective. Thus, in the nonlinear case, the conceptual differences between
ICA and SFA also matter.

We believe that the close relation between linear SFA and second-order
ICA will lead to a way to combine the two algorithms into a nonlinear
method for extracting slowly varying and statistically independent compo-
nents and thereby perform nonlinear blind source separation. This is the
subject of current research (Blaschke & Wiskott, 2004b, 2005).
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